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Sec.1 Background

» A pulsar spins down with a power law
Q= —kO" (1a)
» The braking index iIs defined as

_QO0 v, P°P

Tar T p? (1b)

» There are 8 pulsars with measured braking index, 7 has n<3
and one has n>3 which deviate from expected value N =3

by the magneto-dipole radiation model



Braking indexes of 8 magnetars with SNRs

Source n Timing reference
IE 1841 3£4 Dib & Kaspi (2014)
SGR 0526 240 £ 0.04 Tiengo et al. (2009)
1.82 + 0.06* Kulkarni et al. (2003)
SGR 1627 1.87 £ 0.18 Esposito et al. (2009a,b)
SGR 0501 6.3 = L7 Gogus et al. (2010)
PSR 11622 =235 £ 0.08 Levin et al. 2010
=2.6 £ 0.6* Levin et al. 2010
1E 2259 32+£10 Dib & Kaspi (2014)
CXOU J1714 21 £09 Sato et al. (2010)
22 + 09 Halpern & Gotthelf (2010b)
1.7 £ 0.5* Halpern & Gotthelf (2010b)
Swift J1834 1.8 £ 0.04 Kargaltsev et al. (2012)

(Z.F. Gao et al. 2016, MNRAS, 5456, 55)



PSR J1640-4631 is the first pulsar reported with high braking index (n=3.15), it is

also known as HESS J1640-465 and emits gamma-ray in TeV detectable using with
NuSTAR and Chandra X-ray observatories, is associated with SNR G338.3-0.0.
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(Z.F. Gao etal. 2017, ApJ, 849, 19)



Improvements needed in our previous work

> InGaoetal (2017), the assumption of a simple exponential decay of dipolar

magnetic field during the first 10 kyr was made, but the combined ohmic decay
and Hall drift may cause a qualitatively different form of field decay.

» The theoretical model in Gao et al. (2017) utilized the familiar flat space-time
form of the Maxwell's equations The inclusion of relativistic effects raises the
timescale of magnetic field ; it is necessary to re-investigate the dipole magnetic
field of PSR J1640-4631 by considering the gravitational effects.



Sec. 2. The Ohmic decay of the dipole magnetic fields in
PSR J1640-4631

2.1An eigenvalue equation for dipole magnetic field decay

»> We assume spherically symmetric spacetime geometry and employ the familiar
Schwarzschild coordinates, we can cast the spacetime geometry of a NS

ds® = —e?®M 22 4 2AMM g2 4 22402, ()

where e®® is the red shift factor, e*” =(@—-2Gm(r)/c’r)™* is the space curvature
factor and m(r) is the gravitational mass enclosed within radius r.

» According to Wald (1984), Maxwell's equations in covariant forms is expressed as
vf'rFﬂﬂ = —4;.}'5._ {33}
VaFs, =0, (3b)

where F_, =—F,,, and J, are the coordinate components of the Maxwell

tensor, the conserved four current respectively. The current is described by the
relativistic extension of Ohm's law, Jo = 00us iy v, (4)

where V* and ¢ stand for the four velocity of a conducting neutral plasma



» To simplify the algebra, consideration is restricted to dipolar (poloidal) fields in this
paper. In the curved spacetime, the MHD equation takes the following form:

ld_B'p 1V x L"G" X (E*T*”:'Ep] =0, (3

c dt Ao

where Ep — B"F+ B0, (6)

> The field components of (B", B?) are given by

B(tr.0) = —F(t,r) cosh,  (Ta)  BO(t,n0) = — (1 §

2r

WGM\* A(r°F)
) . sin ., [?b]

c2r
with the function F(r,t) to be determined.

» Assuming that magnetic field lines confined in the crust, we give

ArF)
or

b=

Aror? & : rl d 2Gm(r
dmar= OF 1_2@??1{:))?% < [Z{l— ( }]

} —27F (8)

with 7 =(1-2M(R)/R)*%



Boundary conditions and relativistic Stokes function

> First, the field at the stellar surface must approach continuously to the field in
vacuum, the outer boundary condition is given by

ArF(t.r ] . 2yIn(1 —y= 1) + ?”__11
f % R = Gy)r'F(t,R), (%) and G = Y n(l —y1) +-yu+% o0

with y=R/R,, where Rs=2GMR/c*is Schwarzschild radius of the star, and M is
the star's mass. Since G(y)<O0 (in particular, in the flat spacetime case G(«) =—-1),
the boundary condition forces a bending of F in the upper layer.

» Secondly, F(r,t)=0 as r —0.

» By coupling Einstein's equations with a perfect fluid energy momentum tensor, we
can obtain differential equations for m(r), o(r) and the TOV equation of hydrostatic
equilibrium P(r).

o _ aF
a2 T = ( 3 53 T 5
c ot cor ar r

P05

o y o}
v o i ar r

_ 2Gm(r) aF 1 lzfjm{"‘:’ n dn; E{E _ : 2K (10)

which needs to satisfy the relativistic Stokes function, we can expand F(t,r)
Mo a serles F(t, ) =Zﬂne‘%32fﬂ(r) (n=1,2,3,--), (11)



> where a variable defined as x=r/R, A\, is the expansion coefficient and the
summation is over all eigenmodes, X, (x) of the corresponding Sturm-Liouville
eigenvalue problem and the associated boundary-regularity conditions

EX,(z) + Ane ® X, (z) =0, (12)
2Gm(r), 0* 1 [2Gm(r) 4nG 4 P s, 2
b= (1— il Tl =—-Z 3
where b=(l-—FF)737+ St 2T (F P53z (1

Is determined by the geometrical and hydrodynamical variables. By introducing the
first-order spherical Bessel function (&) =(sin&—&cos&)/ &% | we obtain

1 L (nm) = sin(nrx) — nmz cos(nmx) (14)

RE HEHERSIE

» Then the final expression of F(t,x) is given by

Xalz) =

—rgl i

—cglnt "
— ZAHE amer? X () Z A, szl(ﬂTE)E‘ Tmo 2 (15)

1 .
where A, — Jo i1 (nmx)z?dx

: (16)
fD 2(nmx)rdr



2.2An eigenvalue equation of toroidal magnetic field decay

» Similarly, the toroidal component of the field is given by

B, =-Y H (x,t)d;g"“ . (1)

» Here only the dipolar component is considered (taking I=1 and m=0). In order to
facilitate the calculation, we prefer the force-free fields . They satisfy

VxB=uB, B-Vu=0, (2)

where w4 1s a parameter related to the magnetic field curvature, When magnetic
fields are confined to the crust, .+ must be adjusted to have a vanishing radial
component in the crust-core interface, which can be done by solving

t&l’l[ﬂ (Rmre o RJ] — ﬂﬁl«mrc . (3)
» We find that H(r, t) has the same evolution form as that of F(r, t), which

implies a simple linear relation
|B,| H(r,t) pzR

|B.|  F(r,t) 2 (4)




» Using separation of variables, we get

Aro OH (1, t) 1 2M (r)

_QM(T))% 5(T21?(’”*t))' _ 228t (5)

1 _
= 2 Z(1 _ ,
¢ ozY ( r ) re Or- ( r or r2
> Then, we have y_ TR I (nTT) ot (6)
y H(t 1.) A, € AnaRZ |
' 2 rR?
T

1: ] | ] | ] | ]

1o} -
g o[ E_/(B-Sing) ;
o - B,/(B-5ind)
® i B, /(B-Cosil)
F 6 i
= B
- [
E L
= 4r ]
E n
i

[l_'T__u_l_u PR T P | T T PR I T T T | T T PR I T T T | T T |_

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

xz(rR)

Normalized magnetic field components of the crustal confined for the force free field:
vs. normalized radial coordinate X, M = 1.45M,. R = 1.16 x 10°cm Reore/R ~ 0.92.

EoS: Douchin \& Haensel (2001) B, ~ 3.4 x 10'3G for PSR J1640-4631
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Sec.3 The coupled model of the ohmic decay and Hall drift

» In an enhanced ohmic decay model, the induction equation describing the
evolution of poloidal magnetic fields in the crust is given by

By, o [

ot Ao

dmen,

v x (¢*B,)]| (7)
» This equation contains two different effects: the Hall drift and ohmic
decay, and each effect operates at different timescales:

Arn.eR? 1.6 R. , Ne

THall = cBy - B4 ( lkm) 2.5 % 1036 ¢m—3 Myr,
4o R? R o (8)
TOhm = =13.5 € )2 Myr.
c? (Tkm) 3.0 % 102151 M7

» We include phenomenologically two evolutionary stages: an initial stage with
rapid (non-exponential) decay, and a later stage with purely ohmic dissipation

b _ o D=7t/ Tom)
P 1+ E—]H(l —exp(—Zt/Tohm)) (9)



» The poloidal magnetic energy decay rate, L, , in the crust in the enhanced
ohmic decay model is then estimated as

1 B? B3
L,= Z P_)qy
Pooar /L-'(Tohm " THaHBID) (10)
B /82 exp(—2Zt/Tohm) exp(—3Zt/Tohm) Vr2dr.
TOhm |1 + T‘” (l E’fp( Zr )] THan [l + T;t - (1-— lP(T( - )]?

> Using Eqg. (10), we calculate the current values of L, as 1,25 x 10*”ergs™!

and 1.77 x 10*°ergs—! respectively, correspondingto 7o, = 3.25 x 10% yrs
and Tonm = 1.26 x 107yrs, , respectively.

» From the x-ray observations for PSR J1640-4631
Fosy =1.9x107*° erg cm™2 s ~or magnetars
d =12kpc=12x3.08x10" m Ts = (4710)107 K

L, =F.x472d® =3.26x10" ergs™
T.=(L,/47Rc )" = (Ly / 47R* o) * ~1.25x10° K



Numerical fitting for the enhanced ohmic decay in PSR J1640-4631
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Other isotropic internal heating mechanisms
» The minimal cooling model (Page et al. 2004, 2006);

» Superfluid vortex creeping) (Alpar et al. 1984, 1989;
Cheng et al. 1992)

» The rotochemical heating (Gonzalez \& Reisenegger
2010)



Sec.4 Anisotropic heating for soft X-ray emission
4.1Magnetic spot formation in NSs

» The partially screened gap (PSG) model implies an additional constraint on the
local intensity of small-scale magnetic field strength. The magnetic spots can be
created by extracting magnetic energy from the toroidal field that resides in deep
crustal layers, via the Hall drift with a timescale of 10 kyrs (Geppert \& Vigano
2014). The formation of magnetic spots in the crust would have consequences for

the potentially observable surface temperature distribution.

» The magnetic induction equation and the thermal balance equation show a tight
connection of thermal and magnetic evolution

dB 2
ot =-VX Ao

(eB) + [V % (e"B)]] .

-1;1 ETl s

oT
cogy ~V (€7 R-V(e'T] = €27 (=Qu +Qn),
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Fig. 4— (a) Evolution of magnetic field of PSR J1640—4631 at ¢ = 0 (blue solid line), 10 kyr (red solid line), 100 kyr
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2000 kyr (green dash-dotted).



B,(10"G)

“ ©
@ @
wl of-
- . ®
gA $ s' 0
= n  a
0]. -
wl- -
= »
™

o

oF

-~ — m-
§ g
3. T =
-

“@

=

fidez)

k& A H o kA Ra
o(deg)

8. 8RR e Bk R B

a(deg)
Kk 8 & & o = & & &

Hldeg)
888 8B o 8% 8.8
&(deg)

B A8 8 &« &2 £ 8
a(deg)

B B R M ooH R KB

@(deg) @ (deg)

Fig. 5.— Contour plots of three components of magnetic fields in PSR J1640—4631. The plots are made
Hammer projection at a r = 0.995R for run A99-4, where 99% of the initial energy is in the toroidal field.



4.2Thermoplastic wave heating due to toroidal field decay

» The rapid development of stability in the crust of a highly magnetized NS yields
stress (Beloborodov \& Li 2016). A plausible mechanism for yielding this
Instability is a thermoplastic flow, which occurs in hot crust with T >10"8 K (e.qg.,
Yuan \& Zhang 1998, 1999). This possibility is attractive for the inner crust under
the polar caps of the star (Beloborodov \& Levin 2014).

» In a magnetically stressed crust, thermal softening leads to a TPW that is the
temperature sensitive plastic flow. Heat conduction helps the burning to spread,
and the propagation wave dissipates the magnetic energy inside the crust.

2000 yr
By ~ 6.3 x 102022 (—)G
' ' THall
Bi bevz Bz E_i':;’:::-hnl'rﬂ 2

[j' o o — E -
8wAL 8Ty 8y = 2bg

Lx = (Vy = SpoT,,

. R. .
Py = (d_—m)zFx(l —14/R)?,



Pulsar Cap Magnetosphere
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Fig. 6.— Crustal plate, that locates above the plasti-
cally heated layer, rotates very slowing with horizontal
velocity vy,



Efficiency of soft X-ray emission

The surface temperature 7, at the non-polar cap re-
cion is less than that in the polar cap. We estimate 7.
as

2epr
;H y—1/1 — (2.02 —2.65) < 10° K (61)

for a possible density range p ~ (6—9) <102 gcm—
The X-ray emission from the non-polar cap region may
be powered by the combined effects from the ohmic
decay of magnetic field. superfluid vortex creeping. ro-
tochemical heating and so on. Due to the lower tem-
perature, the X-ray flux at the non-polar cap region
may be below the minimum limit of the X-ray detec-
tor. In theory. the resulting X-ray luminosity can be
estimated as

T, = Tyl

3

Ly = (4w R? — S,)oT2. (62)
Then the total soft X-ray luminosity of the star is
Liot(X)=Lx + Lx, (63)

and the X-ray energy conversion coefficient is given
by

Ltat{X}
Lrot —+ LB —+ Q

This value of 77 1s less than the 1sotropic X-ray energy

~ (1.4~ 4.7T) < 107°%.  (64)

=
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Fig. 7.— The Lx — L, plot for our sample and
related objects. The big filled red-dot indicates PSR
J1640—4631.



Summary

In this work, we mvestigate the Ohmic decay of surface dipole magnetic field of high-braking
index pulsar PSR J1640—4631, and interpret the observed soft X-ray flux F;°[2 — 10keV] from
Chandra + NuStar telescopes. We obtain the ohmic decay timescale Tohm ~ 3.23 x 10° yr.
Observations indicate that magnetic multipole fields could exist in a neutron star and the toroidal
component of multipole fields at and near the pulsar cap is thought to be responsible for the star’s
unique pulse profile. A possible application of ohmic decay timescale to thermoplastic wave (TPW)
heating due to toroidal fields dispassion is studied for interpreting the observed soft x-ray emission
of PSR J1640—4631, and other heating mechanisms for the star’s surface thermal emission are also
investigated.

Thank you

for your attention!



