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 A pulsar spins down  with a power law 

 

 The braking index is defined as 

 

                                                                                                          (1b) 

 There are 8 pulsars with measured braking index, 7 has             

    and one has         ,   which deviate from expected value              

    by the magneto-dipole radiation model           

 

                             

   Sec.1  Background 
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Braking indexes of 8 magnetars with SNRs 

(Z.F. Gao  et al. 2016, MNRAS, 5456, 55) 



( Slan et al. 2016) 

PSR J1640-4631 is the first pulsar reported with high braking index (n=3.15), it is  

also known as HESS J1640-465 and emits gamma-ray in TeV detectable using with 

NuSTAR and Chandra X-ray observatories, is associated with SNR G338.3-0.0. 



(Z.F. Gao  et al. 2017, ApJ,  849, 19) 



 In Gao et al. (2017), the assumption of a simple exponential decay of dipolar 

magnetic field during the first 10 kyr was made, but the combined ohmic decay 

and Hall drift may cause a qualitatively different form of field decay.  

 

 The theoretical model in Gao et al. (2017) utilized the familiar flat space-time 

form of the Maxwell's equations The inclusion of relativistic effects raises the 

timescale of magnetic field ;  it is necessary to re-investigate the dipole magnetic 

field of PSR J1640-4631 by considering the gravitational effects. 

            Improvements needed  in our previous work) 



 We assume spherically symmetric spacetime geometry and employ the familiar 

Schwarzschild coordinates,  we can cast the spacetime geometry of a NS 

 

 

2.1An eigenvalue equation for dipole magnetic field decay 

where         is the red shift factor,                                              is  the space curvature 

factor and m(r) is the gravitational mass enclosed within radius r. 
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 According to Wald (1984), Maxwell's equations in covariant forms is expressed as 

where                       , and         are the coordinate components of the Maxwell 

tensor, the conserved four current respectively.   The current  is described by the 

relativistic extension of Ohm's law, 

 

F F   J

where        and         stand for the four velocity of a conducting neutral plasma 

and its scalar electrical conductivity, respectively. 

V  

   Sec. 2. The Ohmic decay of the dipole magnetic fields  in 

            PSR J1640-4631 



 To simplify the algebra, consideration is restricted to dipolar (poloidal) fields in this 

paper. In the curved  spacetime, the MHD equation takes the following form: 

where  

 The field components of                      are given by 

 

 

     with the function F(r,t) to be determined.  

 

 Assuming that magnetic field lines confined in the crust, we give 

 

 

  

   with  

( , )rB B



 First, the field at the stellar surface must approach continuously to the field in 

vacuum, the outer boundary condition is given by 

                                                     and 

 

     with                   where                         is Schwarzschild radius of the star, and M  is  

    the star's mass. Since G(y)<0  (in particular, in the flat  spacetime case                  ),   

    the boundary condition forces a bending of F in the upper layer. 

 Secondly, F(r,t)=0  as              . 

 By coupling Einstein's equations with a perfect fluid energy momentum tensor, we 

can obtain differential equations for m(r),         and the TOV equation of hydrostatic 

equilibrium P(r). 

 

Boundary conditions and relativistic Stokes function 
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which needs to satisfy the relativistic Stokes function, we can expand F(t,r) 

 into a series  

 



 where a variable defined as x=r/R,           is the expansion coefficient and the 

summation is over all eigenmodes,           of the corresponding  Sturm-Liouville 

eigenvalue problem and the associated boundary-regularity conditions 

 

 

      where 

 

     is determined by the geometrical and hydrodynamical variables. By introducing the  

    first-order spherical Bessel function                                                , we obtain 

 

 

 Then the final expression of F(t,x) is given by 

 

 

   where 
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2.2An eigenvalue equation of toroidal magnetic field decay 

 Similarly, the toroidal component of the field is given by 

 Here only the dipolar component is considered (taking l=1 and m=0). In order to 

facilitate the calculation, we prefer the force-free fields . They satisfy 

where       is a parameter related to the magnetic field curvature, When magnetic 

fields are confined to the crust,       must be adjusted to have a vanishing radial 

component in the crust-core interface, which can be done by solving 



(1) 

(2) 



 (3) 
 We find that H(r, t) has the same evolution form as that of F(r, t), which 

implies a simple linear relation 

(4) 



 Using separation of variables, we get 

 Then, we have 

(5) 

(6) 

Normalized magnetic field components of the crustal confined for the force free field: 

vs. normalized radial coordinate x,  

EoS: Douchin \& Haensel (2001) 



Numerical fitting of the pure ohmic decay for PSR J1640-4631. 



Sec.3 The coupled model of the ohmic decay and Hall drift 

 In an enhanced ohmic decay model, the induction equation describing the 

evolution of poloidal magnetic fields in the crust is given by 

 This equation contains two different effects: the Hall drift and ohmic 

decay, and each effect operates at different timescales: 

 We include phenomenologically two evolutionary stages: an initial stage with 

rapid (non-exponential) decay, and a later stage with purely ohmic dissipation  

(7) 

(8) 

(9) 



 The poloidal magnetic energy decay rate,       , in the crust in the enhanced 

ohmic decay model is then estimated as 
pL

(10) 

 Using Eq. (10), we calculate the current values of         as  pL

and                             respectively,   corresponding to                          

and                                     ,  respectively. 

24 dFL PSRX 

1213 scmerg109.1 PSRF

m1008.312kpc12 19d

33 13.26 10 erg s 

 From the x-ray observations for PSR J1640-4631 

6~ (4 10) 10 KST  

For magnetars 



Numerical fitting for the enhanced ohmic decay in PSR J1640-4631 



Other isotropic internal heating mechanisms 

 

 The minimal cooling model (Page et al. 2004, 2006); 

 

 Superfluid vortex creeping) (Alpar et al. 1984, 1989; 

Cheng et al. 1992) 

 

 The rotochemical heating (Gonzalez \& Reisenegger 

2010) 



Sec.4 Anisotropic heating for soft X-ray emission 

 The partially screened gap (PSG)  model implies an additional constraint on the 

local intensity of  small-scale magnetic field strength. The magnetic spots can be 

created by extracting magnetic energy from the toroidal field that resides in deep 

crustal layers, via the Hall drift with a timescale of  10 kyrs (Geppert \& Vigano 

2014). The formation of magnetic spots in the crust would have consequences for 

the potentially observable surface temperature distribution. 

4.1Magnetic spot formation in NSs 

 The magnetic induction equation and the thermal balance equation show a tight 

connection of thermal and magnetic evolution 







4.2Thermoplastic wave heating due to toroidal field decay 

 The rapid development of stability in the crust of a highly magnetized NS yields 

stress (Beloborodov \& Li 2016). A plausible mechanism for yielding this 

instability is a thermoplastic flow, which occurs in hot crust with T >10^8 K (e.g., 

Yuan \& Zhang 1998, 1999). This possibility is attractive for the inner crust under 

the polar caps of the star (Beloborodov \& Levin 2014).  

 In a magnetically stressed crust, thermal softening leads to a TPW that is the 

temperature sensitive plastic flow. Heat conduction helps the burning to spread, 

and the propagation wave dissipates the magnetic energy inside the crust. 





Efficiency of soft X-ray emission 





         Summary 
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