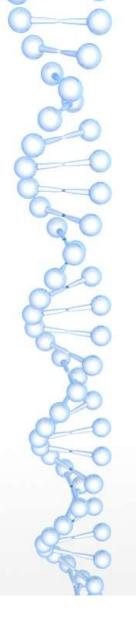


Zerilli equations within a modified theory of General Relativity

Peter O. Hess
Instituto de Ciencias Nucleares
Universidad Nacional Autónoma de México
and
Enrique López Moreno
Facultad de Ciencias
UNAM



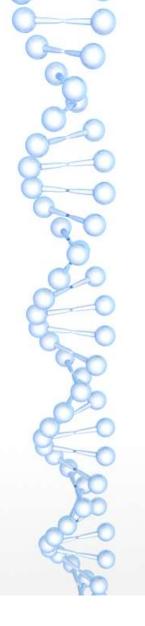
Extension of the GR theory:

$$g_{00} = \left(1 - \frac{2m_0}{r}\right) \rightarrow \left(1 - \frac{2m(r)}{r}\right)$$

$$m(r) = m_0 \left[1 - \frac{b}{4} \left(\frac{m_0}{r}\right)^2\right]$$
example: $b = \frac{64}{27}$

Origin of the addition term: Vacuum flutuations

Pseudo-Complex General Relativity: Hess and Greiner, IJPME 18(2009),51; Hess, Schäfer, Greiner, Springer book 2015.

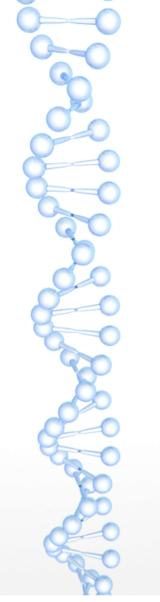


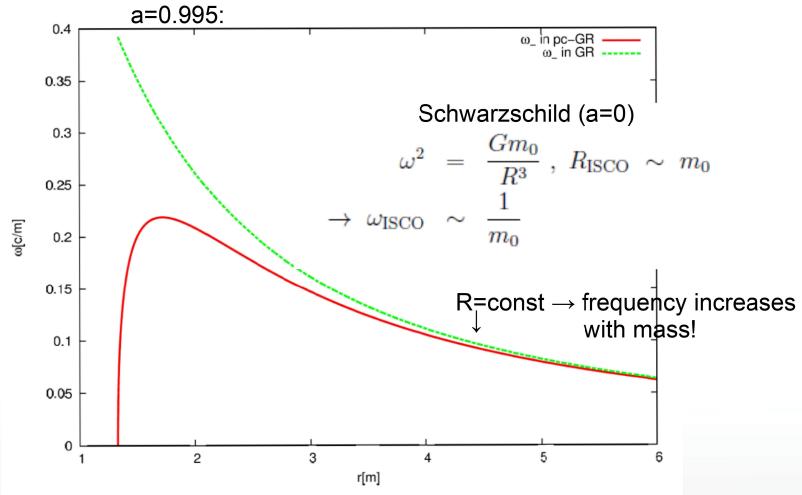
Gravitational wave event

$$M_c = \widetilde{M}_c F_\omega(r) = \frac{c^3}{G} \left[\frac{5}{96\pi^{\frac{8}{3}}} \frac{df_{\text{gw}}}{dt} f_{\text{gw}}^{-\frac{11}{3}} \right]^{\frac{3}{5}}$$

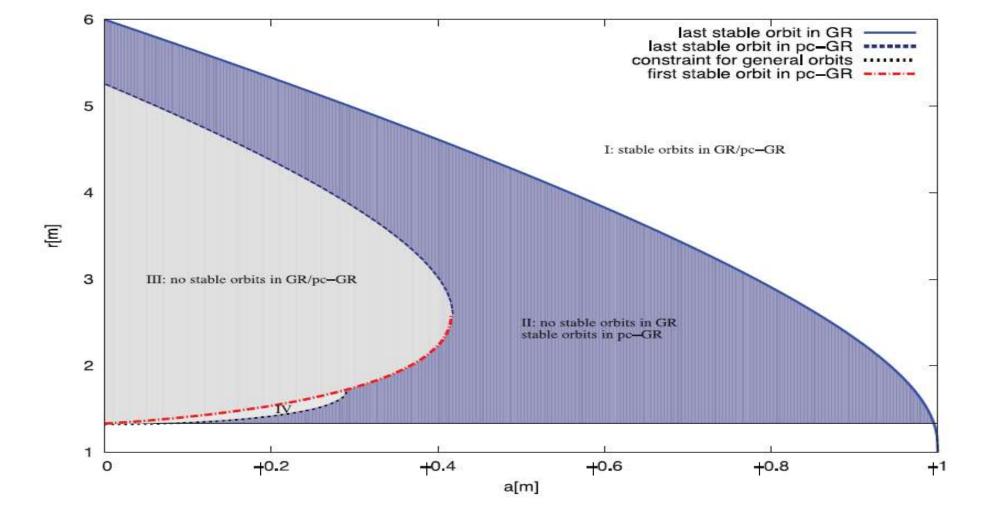
$x = \frac{r}{R_s}$	$F_{\omega}^{-1}(r)$	Final mass	\widetilde{d}_L	z (approx.)
0.6673	527	15,812	140,884	≈12.8
0.6675	401	12,023	107,000	≈10
0.6678	295	8,846	78,765	≈7.7
0.6682	218	6,544	58,304	≈6
0.6690	144	4,308	38,428	≈4
0.7000	10.8	323	3,002	≈0.5

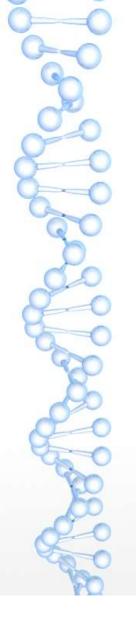
Hess, MNRAS 462 (2016), 3026.





Nielsen and Birnholz, Astronomische Nachrichten 339(4) (2018), 29&; arXiv; gr-qc:1708.0333



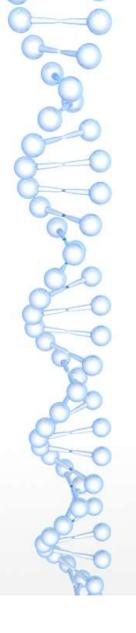


Stability of the Schwarzschild solution

$$ds^2 \ = \ e^{2\nu} dt^2 - e^{2\psi} \left(d\phi - \omega dt - q_r dr - q_\theta d\theta \right)^2 - e^{2\mu_r} dr^2 - e^{2\mu_\theta} d\theta^2$$

$$\begin{aligned} \text{axial modes}(-): \\ \omega \neq 0 \ , \ q_r \neq 0 \ , \ q_\theta \neq 0 \\ \text{polar modes}(+): \\ \delta \nu \neq 0 \ , \ \delta \mu_r \neq 0 \ , \ \delta \mu_\theta \neq 0 \ , \ \delta \psi \neq 0 \end{aligned}$$

Chandrasekhar's book; The mathematical theory of black holes



(a) Regge-Wheeler

Axial modes, negative parity

$$\left(\frac{d^2}{dr_*^2} + \omega^2 \right) Z^{(-)} \ = \ V^{(-)} Z^{(-)}$$

$$V^{(-)} \ = \ \frac{\Delta}{r^5} \left\{ \mu^2 r + 2r + 2mr - 6m + 2m'r \right\}$$

m=m(r)!

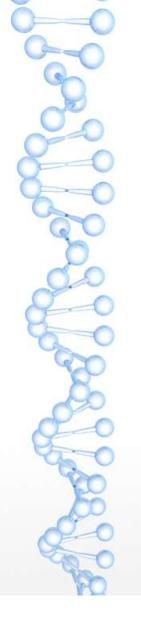
(a) Zerilli

Polar modes, positive parity

$$\left(\frac{d^2}{dr_*^2} + \omega^2\right) Z^{(+)} = V^{(+)} Z^{(+)}$$

$$V^{(+)} \approx \frac{a}{(r - r_0)}$$

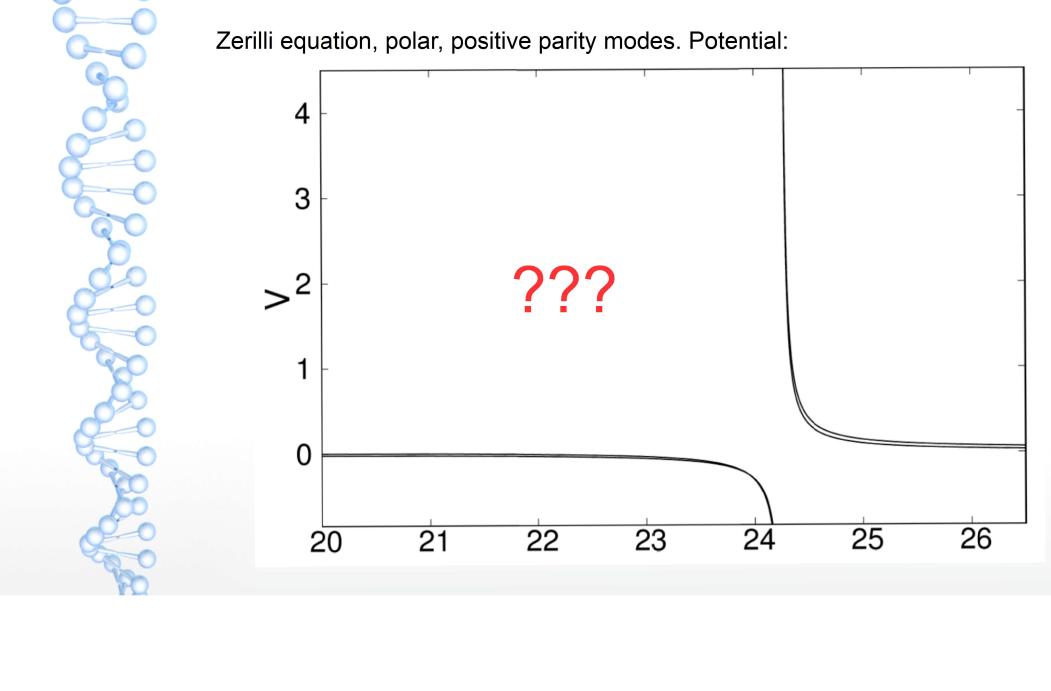
$$V^{(+)} = \frac{F(m, m', m'', n)}{\{r^3[n(-2m+r) - 2m'(3m+nr)]\}}$$



$$\begin{split} F(m,m',m'',n) = \\ -(n*(-2m+r)^2(3m+nr)(-(\frac{1}{r})+\frac{(3mn(-m+(2+n)r))}{(3m+nr)^3} \\ + \frac{(m'(3m^2+3mnr-nr^2))}{((-2*xm+r)*(3*xm+xn*r)**2)} - \frac{((-5*xm+2*r)*(-3*xm**2-3*xm**xn*r+xn*r**2))}{(r*(-2*xm+r)*(3*xm+xn*r)**2)} \\ + \frac{(n(-6mm'r-2m'nr^2))}{(3m+nr)^3} + \frac{((-5m+2r+m'r)(-3mm'r-m'nr^2))}{(r(-2m+r)(3m+nr)^3)} + \frac{(3mm'+3m'2r+3mm''r+2m'nr+m''}{nr^2)}(3m+nr)^2 \\ + (1+2m'-\frac{2m}{r}-\frac{(2(-2m+r))}{r}+\frac{(3m*(-2m+r))}{(r(3m+nr))})((1+n)/(n(-2m+r)) \\ - \frac{1}{n}(\frac{(-2*m')}{(-2m+r)^2}+\frac{m^2}{(r(-2m+r)^2)}+\frac{(m'2r)}{(-2m+r)^2}+\frac{1}{(-2m+r)}+\frac{m'}{(-2m+r)}-\frac{m}{(r(-2m+r))})))) \end{split}$$

In pcGR no relation between the axial and polar solutions!

This expression reduced to the standaqrd one, when the Mass function is constant.



Asymptotic behavior:

$$\psi(x) \longrightarrow \begin{cases} e^{-i\omega x}, & x \longrightarrow -\infty, \\ e^{i\omega x}, & x \longrightarrow \infty, \end{cases}$$
 $\xi = 1 - \frac{4}{3y}$, with $y = \frac{r}{m_0}$

(x=Tortoise coordinate)

$$\rightarrow \quad \Psi \quad = \quad (1-\xi)^{-2i\widetilde{\omega}}\,\xi^{\frac{4i\widetilde{\omega}}{3}}e^{\frac{2i\widetilde{\omega}}{(1-\xi)}}\Phi(\xi)$$

Units:
$$\widetilde{\omega} = m_0 \omega$$
 $[\omega] = \mathrm{km}^{-1}$

$$[m_0] = \mathrm{km}$$

Order of relevent frequencies

$$\nu = 250 \text{ Hz} \rightarrow \omega = (2\pi)250 \approx 1571 \text{Hz}$$

$$1 \text{Hz} = \frac{10^{-5}}{3} \text{ km}^{-1}$$

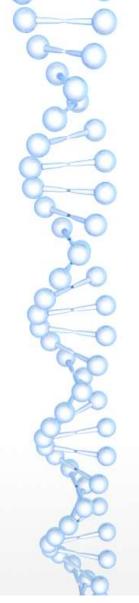
$$\omega \approx 5.24 \cdot 10^{-3} \text{ km}^{-1}$$

$$\tilde{\omega} = m_0 \omega$$

$$m_0 = 60 * 1.5 \text{ km} = 90 \text{ km}$$

$$\tilde{\omega} \approx 0.47$$

I. e., when the mass m0 increases, also does the was and it also decreases when the mass decreases. Similar for the bare Frequency omega.



The Asymptotic Iteration Method (AIM)

T.H. Cho et al., Advances in Mathematical Physics (2012), ID:281705

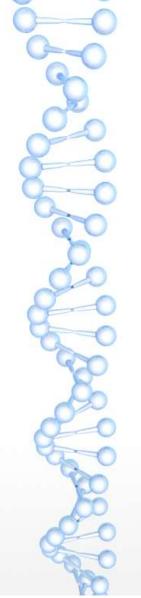
$$\chi'' = \lambda_0(x)\chi' + s_0(x)\chi, \longrightarrow \chi^{(n+1)} = \lambda_{n-1}(x)\chi' + s_{n-1}(x)\chi$$

$$\lambda_n(x) = \lambda'_{n-1}(x) + s_{n-1}(x) + \lambda_0(x)\lambda_{n-1}(x), \qquad s_n(x) = s'_{n-1}(x) + s_0(x)\lambda_{n-1}(x).$$

Convergence condition:
$$\frac{s_n(x)}{\lambda_n(x)} = \frac{s_{n-1}(x)}{\lambda_{n-1}(x)} \equiv \beta(x)$$

Quantization condition: $\delta_n = s_n \lambda_{n-1} - s_{n-1} \lambda_n = 0$ (It is a polynomial in the Frequencies \rightarrow look for zeros)

However, the dependence on x is of a disadvantage:



The improved AIM:

Expansion around the point x:

$$\lambda_n(\xi) = \sum_{i=0}^{\infty} c_n^i (x - \xi)^i,$$

$$s_n(\xi) = \sum_{i=0}^{\infty} d_n^i (x - \xi)^i,$$

Recursion relations coefficients:

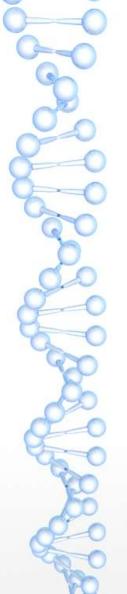
Recursion relations for the expansion
$$c_n^i = (i+1)c_{n-1}^{i+1} + d_{n-1}^i + \sum_{k=0}^i c_0^k c_{n-1}^{i-k}$$
 coefficients:

$$d_n^i = (i+1)d_{n-1}^{i+1} + \sum_{k=0}^i d_0^k c_{n-1}^{i-k}.$$

New quantization condition: $d_n^0 c_{n-1}^0 - d_{n-1}^0 c_n^0 = 0$,

$$d_n^0 c_{n-1}^0 - d_{n-1}^0 c_n^0 = 0$$

Polynomial in ω



Some remarks on how to get a "quick" convergence

- Choose a compact support.
- Get the asymptotics right.
- Expand around the maximum or minimum of the potential.

Axial modes: GR

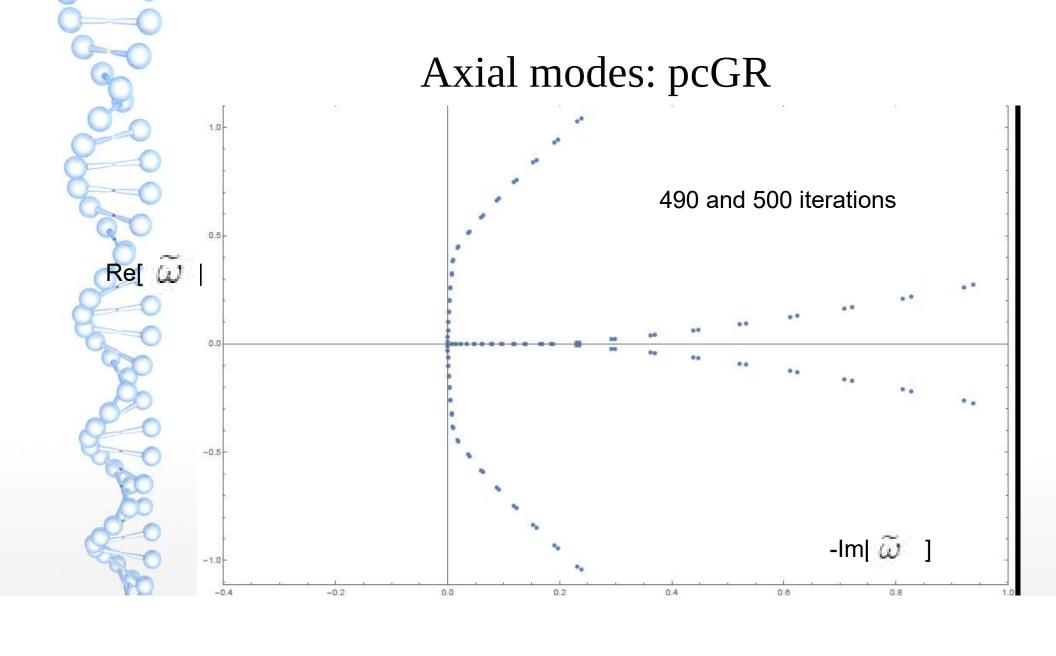
Ordered according to raising imaginary part:

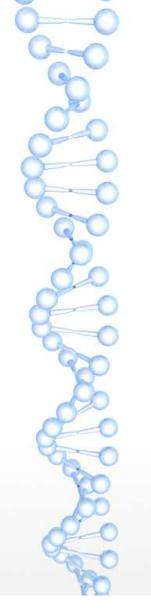
Ordered according to raising real part:

0.0051-i 7.539	0.03061 -i 8.143	0.03144 -i 8.899	0.03476 -i 5.556

¡There are also modes with a negative imaginary part only!

→ Overdamped modes.





Take $\omega_R - i \mid \omega_I \mid = (0.3061 - i \ 0.4783)/m_0$ as "experimental". The ratio is

$$\frac{\omega_R}{|\omega_I|} = 0.640$$

$$= \frac{\tilde{\omega}_R}{|\tilde{\omega}_I|} \tag{2}$$

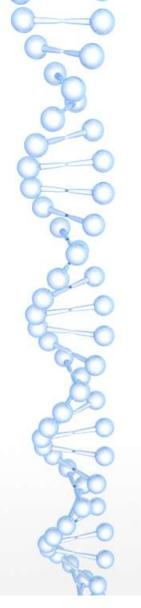
With $\tilde{\omega}_R = m_0 \omega$, we obtain

$$m_0 = \frac{0.3061}{5.24}1000 = 58.75$$
39.2solar masses (3)

Now, look for a value in the extended theory with nearly the same ratio: $\tilde{\omega} = 1.12196 - i \ 1.7895$. the ratio is 0.627, thus

$$m_0 = \frac{1.12}{5.24}1000 = 214.$$
142.3solar masses (4)

approximately 3.6 times larger than in GR.

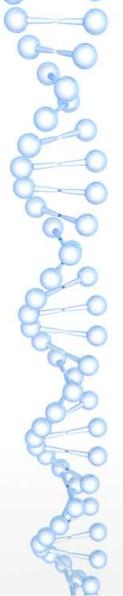


Polar modes (pcGR compared to GR)

Positive parity, I=2: (huge problems with interations for pcGR, L. Manfredi et al, PLB 779 (2018), 492: 400-500 iterations!)

We also went up to 600 interations and no convergence.

One problem is: How to treat the pole in the potential???



Conclusions

- Stability of Schwarzschild solution, with variable mass m(r)
- Axial and polar perturbations
- Axial modes are stable, very small frequencies present and damped solutions. Polar modes do not converge due to the pole. Need to be treated!
- Axial modes indicate a larger mass, still of the same order as in GR.
- Work needed for Kerr solutions. There, the differences are much bigger and probably will provide in quality the same results as given in Hess, MNRAS 2016.