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Perturbative QFT

I Starting point: Lagrangian
I Green’s functions or n-point functions
I Wick rotation between Minkowski and Euclidean metric
I Tree level: propagators have mass poles in timelike region
I Perturbation theory

I for particles with mass m, interacting by exchange of
particle with mass µ branch-cuts in timelike starting at
p2 = (m + nµ)2 corresponding to particle emission

I massless exchange particles: series of branch-points
collapse to logarithmic branch-cut starting at mass pole
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I Propagators can be represented by Källen–Lehmann
representations



Hadron Physics

I Asymptotic States: Hadrons
I Mesons
I Baryons

I Fundamental Degrees of Freedom: Quarks and Gluons
I Non-abelian gauge theory
I Running coupling:

strong coupling
at low momenta
(long distance)

weak coupling
at high momenta
(short distance)
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I Nonperturbative phenomena
I Dynamical Chiral Symmetry breaking
I Confinement



Nonperturbative QCD

L(ψ, ψ̄,A) = ψ̄i
(

iγµ(∂µ + ig
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(a)
ij
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)
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)
ψj − 1

4 F (a)
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I Lattice simulations
I based on Euclidean formulation of QCD

I Dyson–Schwinger Equations
I typically in Euclidean metric
I can also be done in Minkowski metric,

at least for weak coupling / perturbative regime
I Renormalization Group Methods
I Hamiltonian Methods based on Minkowski formulation

I Lightfront
I Equal-time

I Effective Field Theory
I . . .



Dyson–Schwinger Equations
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I Infinite hierarchy of coupled
integral eqns for Green’s
functions of QCD

I Reduce to pQCD
in weak coupling limit

I Nonperturbative

I Truncations needed

I Constraints on truncations
I preserve symmetries
I self-consistency



Nonperturbative quark mass function

Rainbow truncation for quark DSE
Z g

1 g2Dµν(q) Γν(k , p) −→ 4παmodel(q2) Dfree
µν (q) γν
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I Evolution from constituent to
current quark mass

I Absence of mass pole on real
axis: confinement?

I Complex-conjugate
singularities: Wick rotation??

Fig. adapted from Maris & Roberts, PRC56, 3369 (1997)
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I Qualitative agreement with
lattice data in spacelike region

Lattice-inspired DSE model:
Bhagwat, Pichowsky, Roberts, Tandy, PRC68, 015203 (2003)
Quenched lattice data: Bowman, Heller, Leinweber, Williams,
NP Proc.Suppl.119, 323 (2003)



published 43 years ago: Nucl. Phys. B 117, 250 (1976)

Nuclear Physics Bl 17 (1976) 250-264 

© North-Holland Publishing Company 

SCHWINGER-DYSON EQUATION FOR MASSLESS VECTOR THEORY 

AND THE ABSENCE OF A FERMION POLE 

Reijiro FUKUDA 

Research Institute for Fundamental Physics, Kyoto University, Kyoto, 606 Japan 

Taichiro KUGO 
Department of Physics, Kyoto University, Kyoto, 606 Japan 

Received 2 April 1976 

(Revised 23 August 1976) 

The Schwinger-Dyson equation of the fermion propagator in the massless vector 

theory is discussed. It is found that the Baker-Johnson-Willey solution in lowest ap­

proximation is in fact a confining solution: the Fermion propagator has no pole or cut 

in the time-like region. Discussions of homogeneous and inhomogeneous equations with 

momentum integration cut-off are also given in some detail. 

1. Introduction

This paper discusses a non-perturbative solution of fermion self-energy in .Abe­
lian gauge theory (QED). The most extensive study has been done by Baker, John­
son and Willey (BJW) [ l] with the conclusion that when the bare electron mass m0 

vanishes and the bare coupling constant satisfies certain eigenvalue conditions, then 
a non-trivial solution of the Schwinger-Dyson (SD) equation can exist with a ferm­
ion self-mass part B(p2 ) (1.2) behaving as B(p2 ) ~ (p2 )-E (E = 3e2 / l 67r2 ) as p2 ➔ 00 

(spacelike ). The gauge chosen by them is a Landau-like gauge and everything is dis­
cussed in Euclidean metric. 

The lowest non-trivial approximate SD equation of the fermion self-energy, 

has been widely discussed [2]. In particular Maskawa and Nakajima [3] have proved 
the existence of the solution in the massive photon case (µ cf 0) and classified the 
solutions. Hereafter we use the notation for (the inverse of) the fermion propagator 
as 

(1.2) 
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It is shown, by means of the Runge-Kutta method of numerical integration, that the 
electron propagator, in the first approximation of the Johnson-Baker-Willey scheme, has 
complex branch-points in the momentum variable, instead of the real branch-point that 
physics requires. 

1. Introduction 

In 1964, Johnson, Baker and Willey [1 ] initiated a programme in which a novel 
perturbation treatment of  quantum electrodynamics was developed. In this theory, 
the bare mass of  the electron vanished and the electromagnetic self-mass was finite. 
In a first approximation, the proper vertex was replaced by a Dirac "r-matrix; and 
the photon propagator was replaced by its presumed asymptotic expression, namely 
a constant multiple of  the bare transverse term. The Dyson equation was then 
regarded as a non-linear integral equation for the electron propagator. The authors 
of  ref. [1 ] solved this equation only for asymptotic values of  the momentum. 

Recently, Fukuda and Kugo [2] looked at the equation again and reduced it to 
a non-linear differential equation. They solved it, with appropriate boundary con- 
ditions, by numerical methods; and they concluded that the electron propagator 
has neither a pole nor a branch-point in the time-like region. They state, indeed, 
that the propagator is an entire function; but Dragovid, Mavlo and Filippov [3] 
show that this conclusion is incorrect. In fact, the latter authors show, again by 
numerical methods, that an expansion of  the propagator in powers of  the momen- 
tum square, p2, has a finite radius of  convergence. Thus the solution of the differ- 
ential equation has at least one singularity; and we expect it to be a branch-point, 
rather than a pole, since the pole of  the bare electron propagator should be 
changed into a branch-point by soft-photon emission. If  the theory is viable, this 
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Open Questions

Is there a fundamental difference between
the analytic structure of propagators of confined particles
and that of propagators of asymptotically observable particles?

If the answer is yes, then the following questions arise
I What is the analytic structure of confined propagators?

I More specific: what is the analytic structure
of confined quark and gluon propagators?

I More general: what is the analytic structure
of n-point functions describing confined fields?

I Could the analytic structure be dependent
on the approach or gauge or renormalization scheme?



Analytic structure of propagators

1. have one (or more) singularities on the timelike axis
2. have one (or more) singularities on the timelike axis,

in combination with singularities at complex momenta on
a second Riemann sheet, corresponding to resonances
and/or virtual states
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3. have one (or more) singularities at complex momenta p2

on the first Riemann sheet
I e.g. a pair of complex-conjugate singularities

4. are entire functions (no singularities)
I constant or (sum of) exponential(s)

5. are, mathematically speaking, not analytic functions
I distributions

Possibilities (3), (4), and (5) would invalidate the naı̈ve Wick
rotation from Minkowski space to Euclidean space



Pair of complex-conjugate singularities

I Singularity on real timelike axis
real mass pole at p
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I Pair of complex-conjugate singularities
singularity at p
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I invalidates the naı̈ve Wick rotation
from Minkowski space to Euclidean space

I Possible interpretation,
analogous to mass and width of resonances
I real part: mass
I imaginary part: hadronization scale



Hadron observables – Moving frames
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I for e.g. form factors and scattering amplitudes we need
hadron bound state amplitudes (BSA) in moving frames

I singularities in the propagator limit the range over which
we can obtain these BSAs without the need for nontrivial
deformations of integration contours



Hadron observables – Form factors
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CERN π-e scattering
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DESY (Brauel)
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this work

Tadevosyan et al. [Fpi2 Collaboration], nucl-ex/0607007;
Horn et al. [Fpi2 Collaboration], nucl-ex/0607005

I Pion elastic form factor can be calculated
up to about Q2 = 4 GeV2 within the Maris-Tandy model
using consistently dressed propagators and vertices
without nontrivial deformations of integration contours



Hadron observables – Scattering

I Use ladder kernel not only for propagators and vertices, but
also inside box diagrams in order to preserve symmetries

+ + + +

+ + + +

I Results for ππ scattering agree with dynamical χSB
Bicudo, Cotanch, Llanes-Estrada, Maris, Ribeiro and Szczepaniak, PRD65, 076008 (2002)

I Results for γ3π agree with
χSB and current conservation
Cotanch and Maris, PRD68, 036006 (2003)

I New data from JLAB for
0.27 GeV2 < s < 0.72 GeV2 ?
(private comm. 2003 ?) 0 0.2 0.4 0.6 0.8
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Is QCD defined in Euclidean space?
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ResultsfromanumericalstudyoftheQCDSchwinger—Dyson(SD) equationindicatethat theWick rotationmaybedisallowed
dueto thepresenceof complexbranchpointsin thequarkpropagator.Atkinson andBlatt obtaineda similar resultin a studyof
masslessQED. Thisleadsusto suggestthatthepreferreddefiningmetricfor suchconfining theoriesis Euclidean,ashasalsobeen
suggestedfor quantumgravity.

It is commonly assumedthat quantumfield the- lions, that the Wick rotation may not be valid and
onesformulatedin the Euclideanmetricand in the we are constrainedto chooseonly onemetric with
Minkowski metricarecompletelyequivalentandthat which to work. That is, the Minkowski andEuclid-
the two formalismsare freely interchangeable.The eanmetricsare inequivalent.Furthermoreit seems
usualprocedureis to initially formulatetheactionin that the properchoiceshouldbe theEuclideanmet-
Minkowsky spaceandthen to perform a “Wick ro- nc, as bothlattice andanalyticstudiesof Euclidean
tation” [1], that is, a formalchangeofvariablefrom QCD havegiven goodagreementwith experiment.
realtimeto imaginarytime, usuallyto simplify anal- HartleandHawking [6], for different reasons,have
ysis or computations.It is notedthat the computa- come to similar conclusionsfor the use of the Eu-
tionsof lattice gaugetheoriesandmostnon-pertur- clideanmetric as the defining metric in quantum
bativequantumfield theoriesare in the Euclidean gravity.
metric. Of courseit is true that in the physics of observ-

The Wick rotation is practiceis performedand ablerelativistic particles,suchas nucleonsand me-
analyzedin momentumspaceandcorrespondsto a sons,theappropriatemetricto useis theMinkowsky
rotationof theq0contourofintegrationfrom thereal metric. But does this contradictthe use of the Eu-
axisto the imaginaryaxis in the relevantpropagator clideanmetric in defining QCD and in the conse-
equationof the theory, andhencerequiresthat the quentnon-perturbativequark—gluondynamicalcal-
propagatorsbefreeof singularitiesexcepton the real culations?The answer is “no” for the following
axis. Basedon “stability” arguments[1] this hasa!- reasons.First, it is now known,usingfunctional in-
waysbeenassumedto be true, thoughdoubtshave tegral calculustechniques,how one can transform
beenraisedat the level ofthetwo-particleBethe—Sal- thequark—gluonEuclideanformulationof QCD into
peterequation[21. Howeverfor confining theories the functional integrals for the meson—baryondy-
thestability argumentis invalid, as it assumesfixed namics [7]. In terms of the hadronic internal
“free” massesfor the constituentparticles,andin- quark’blgluon dynamics, this leads to eigenvalue
deedresults in masslessQED [3,4] and more re- equationsfor A(P

2), whereP
1, is the hadron (Eu-

cently in QCD [5] could indicate,at least in con- clidean,P
2~ 0) four-momentum.Theon-mass-shell

finingquantumfield theories,thepresenceof branch conditionis ,~(P2)= 0, which hassolutionsonly for
pointsin thepropagatorsin thecomplexplaneaway P2 = — M2<0. Thisimplies an analyticcontinuation
from therealaxis.The implicationis, if theseeffects to find a solution,say,P

4—~iMand (P1.P2, P3)=(0,
are genuineand not an artifact of the approxima- 0, 0) in therest frame,andclearly indicatesa return

0375-9601/90/$03.50 © ElsevierSciencePublishersB.V. (North-Holland) 467

I How do we go from quarks and gluons in Euclidean space
to hadrons in Minkowski space?

I How can we define ’light-cone’ observables (e.g. quark
and gluon pdf’s) from a purely Euclidean formulation?



Goals of the Workshop

I Discuss these (and related!) open questions
I Consider ’all’ possibilities without prejudice
I Compare and contrast different approaches

and seemingly contradictory results
I Exchange information

between experts in different methods

In order to achieve (some of) these goals
I Questions during talks are encouraged
I Every day we have a discussion session

for follow-up questions and in-depth discussion
I Potentially lengthy discussions during the sessions

can be postponed to the discussion session
I Friday is available for additional in-depth discussions


