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Perturbative QFT

» Starting point: Lagrangian

» Green’s functions or n-point functions

» Wick rotation between Minkowski and Euclidean metric
>

>

Tree level: propagators have mass poles in timelike region
Perturbation theory
» for particles with mass m, interacting by exchange of
particle with mass p branch-cuts in timelike starting at
p? = (m+ nu)? corresponding to particle emission
» massless exchange particles: series of branch-points
collapse to logarithmic branch-cut starting at mass pole
02 = m?

spacclike timelike ‘

» Propagators can be represented by Kallen—Lehmann
representations



Hadron Physics

» Asymptotic States: Hadrons 2N )
> Mesons ), g
> Baryons ® % ‘u!‘
- - .

» Fundamental Degrees of Freedom: Quarks and Gluons
» Non-abelian gauge theory
» Running coupling:
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» Nonperturbative phenomena
» Dynamical Chiral Symmetry breaking
» Confinement



Nonperturbative QCD
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» Lattice simulations
» based on Euclidean formulation of QCD
» Dyson—-Schwinger Equations
» typically in Euclidean metric
» can also be done in Minkowski metric,
at least for weak coupling / perturbative regime
» Renormalization Group Methods
Hamiltonian Methods based on Minkowski formulation
» Lightfront
» Equal-time
Effective Field Theory
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Dyson—Schwinger Equations
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Nonperturbative quark mass function

Rainbow truncation for quark DSE
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» Evolution from constituent to
current quark mass

» Absence of mass pole on real
axis: confinement?

» Complex-conjugate
singularities: Wick rotation??

Fig. adapted from Maris & Roberts, PRC56, 3369 (1997)

» Qualitative agreement with
lattice data in spacelike region

Lattice-inspired DSE model:

Bhagwat, Pichowsky, Roberts, Tandy, PRC68, 015203 (2003)
Quenched lattice data: Bowman, Heller, Leinweber, Williams,
NP Proc.Suppl.119, 323 (2003)



published 43 years ago: Nucl. Phys. B 117, 250 (1976)

SCHWINGER-DYSON EQUATION FOR MASSLESS VECTOR THEORY
AND THE ABSENCE OF A FERMION POLE

Reijiro FUKUDA
Research Institute for Fundamental Physics, Kyoro University, Kyoto, 606 Japan

Taichiro KUGO
Department of Physics, Kyoto University, Kyoto, 606 Japan

Received 2 April 1976
(Revised 23 August 1976)

The Schwinger-Dyson cquation of the fermion propagator in the massless vector
theory is discussed. It is found that the Baker-Johnson-Willey solution in lowest ap-
proximation is in fact a confining solution: the Fermion propagator has no pole or cut
in the time-like region. Di i of h 3 and inh equations with
momentum integration cut-off are also given in some detail.

published 40 years ago: Nucl. Phys. B 151, 342 (1979)

DETERMINATION OF THE SINGULARITIES OF THE ELECTRON
PROPAGATOR

D. ATKINSON * and D.W.E. BLATT
Department of Mathematics, University of Newcastle, New South Wales, 2308, Australia

Received 2 November 1978

1t is shown, by means of the Runge-Kutta method of numerical integration, that the
electron propagator, in the first approximation of the Johnson-Baker-Willey scheme, has
complex branch-points in the momentum variabie, instead of the real branch-point that
physics requires.



Open Questions

Is there a fundamental difference between
the analytic structure of propagators of confined particles
and that of propagators of asymptotically observable particles?

If the answer is yes, then the following questions arise
» What is the analytic structure of confined propagators?

» More specific: what is the analytic structure
of confined quark and gluon propagators?

» More general: what is the analytic structure
of n-point functions describing confined fields?

» Could the analytic structure be dependent
on the approach or gauge or renormalization scheme?



Analytic structure of propagators

. have one (or more) singularities on the timelike axis

2. have one (or more) singularities on the timelike axis,

in combination with singularities at complex momenta on
a second Riemann sheet, corresponding to resonances
and/or virtual states
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3. have one (or more) singularities at complex momenta p?
on the first Riemann sheet
» e.g. a pair of complex-conjugate singularities
4. are entire functions (no singularities)
» constant or (sum of) exponential(s)
5. are, mathematically speaking, not analytic functions
» distributions

Possibilities (3), (4), and (5) would invalidate the naive Wick
rotation from Minkowski space to Euclidean space

Vim®+ 5 Vim®+5)




Pair of complex-conjugate singularities

» Singularity on real timelike axis

P’ plane X real mass pole at p’= m’ ipy=p,| |x masspoleforfp]=0

Z branchoout + mass pole as |p,| increases

spacelike timelike

» Pair of complex conjugate singularities

o’ plan in=p,| [+ singularity forfp,| =0

singularity as [p,| increases

spacclike timelike

> invalidates the naive Wick rotation
from Minkowski space to Euclidean space

» Possible interpretation,
analogous to mass and width of resonances
» real part: mass
» imaginary part: hadronization scale



Hadron observables — Moving frames

*= rho mass

- rho decay constant
»— pion mass

- pion decay constant
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» for e.g. form factors and scattering amplitudes we need
hadron bound state amplitudes (BSA) in moving frames

» singularities in the propagator limit the range over which

we can obtain these BSAs without the need for nontrivial
deformations of integration contours



Hadron observables — Form factors

Maris and Tandy, PRC62,055204 (2000) [nucl-th/0005015]
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Tadevosyan et al. [Fpi2 Collaboration], nucl-ex/0607007;
Horn et al. [Fpi2 Collaboration], nucl-ex/0607005

» Pion elastic form factor can be calculated
up to about Q® = 4 GeV? within the Maris-Tandy model
using consistently dressed propagators and vertices
without nontrivial deformations of integration contours



Hadron observables — Scattering

» Use ladder kernel not only for propagators and vertices, but
also inside box diagrams in order to preserve symmetries

» Results for 77 scattering agree with dynamical xSB
Bicudo, Cotanch, Llanes-Estrada, Maris, Ribeiro and Szczepaniak, PRD65, 076008 (2002)

% generalized ladder DSE
-~ Vector Meson Dom.
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» Results for v37 agree with

xSB and current conservation 3 ]
Cotanch and Maris, PRD68, 036006 (2003) o ]
» New data from JLAB for L e ]
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Is QCD defined in Euclidean space?

published almost 30 years ago: Phys. Lett. A 146, 467 (1990)

IS SPACE-TIME EUCLIDEAN “INSIDE” HADRONS?

S.J. STAINSBY and R.T. CAHILL
School of Physical Sciences, The Flinders University of South Australia, GPO Box 2100, Adelaide SA 5001, Australia

Received 12 March 1990; accepted for publication 5 April 1990
Communicated by J.P. Vigier

Results from a numerical study of the QCD Schwinger-Dyson (SD ) equation indicate that the Wick rotation may be disallowed
due to the presence of complex branch points in the quark propagator. Atkinson and Blatt obtained a similar result in a study of
massless QED. This leads us to suggest that the preferred defining metric for such confining theories is Euclidean, as has also been
suggested for quantum gravity.

» How do we go from quarks and gluons in Euclidean space
to hadrons in Minkowski space?

» How can we define ’light-cone’ observables (e.g. quark
and gluon pdf’s) from a purely Euclidean formulation?



Goals of the Workshop

» Discuss these (and related!) open questions
» Consider 'all’ possibilities without prejudice

» Compare and contrast different approaches
and seemingly contradictory results

» Exchange information
between experts in different methods
In order to achieve (some of) these goals
» Questions during talks are encouraged

» Every day we have a discussion session
for follow-up questions and in-depth discussion

» Potentially lengthy discussions during the sessions
can be postponed to the discussion session

» Friday is available for additional in-depth discussions



