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Relativity in quantum mechanics

• Quantum observables:

P = |〈ψ|φ〉|2 〈ψ|A|ψ〉 Tr(ρA)

• Inertial coordinate systems:

X −→︸︷︷︸
(Λ,a)

X ′

• Relativistic invariance of quantum observables:

P ′ = P 〈ψ′|A′|ψ′〉 = 〈ψ|A|ψ〉 Tr(ρ′A′) = Tr(ρA)

• Wigner’s theorem: U(Λ, a)

|ψ′〉 = U(Λ, a)|ψ〉 A′ = U(Λ, a)AU†(Λ, a)

ρ′ = U(Λ, a)ρU†(Λ, a)



The Lorentz group and SL(2,C)

2× 2 matrix representation of coordinates

X = σµx
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
= X †

det(X ) = (x0)2 − x2

Poincaré transformations

X → X ′ = ΛXΛ† + A det(Λ) = 1 A = A†

Λµν =
1

2
tr(σµΛσνΛ†) aµ =

1

2
tr(σµA)



Polar decomposition - Boosts

Λ = ((ΛΛ)†)1/2︸ ︷︷ ︸
P

((ΛΛ)†)−1/2Λ︸ ︷︷ ︸
U

Rotationless (canonical) boost (ρρρ = rapidity)

P = e
1
2
ρρρ·σσσ = Λc(p)

Rotation (generalized Melosh rotation)

U = e
i
2
θθθ·σσσ = R(p)

Λ(p) = Λc(p)R(p) R(p) = Λ−1
c (p)Λ(p)



Relativistic dynamics

U(Λ, a) : H → H

Relativistic analog of diagonailzing Hamiltonian

WU(Λ, a)W † =

∫
⊕m,s,d

Um,s(Λ, a)dµ(m, s, d)

m = mass s = spin d = degeneracy

• Um,s(Λ, a) fixed by group theory, basis choice and
representation of H



Poincaré covariant RQM - basis choice:

U(Λ, a)→ Pµ, Jµν → commuting observables

{|(m, s; d)b〉}

Invariants:

M2 = −PµPµ M2S2 = W µWµ W µ =
1

2
εαβγµPαJβγ

Momentum observables:

P V = P/M P+ = P0 + n̂ · P,P⊥

Spin observables (depend on choice of Λx(p)):

six = Λ−1
x (P)iµΛ−1

x (P)i νJ
µν

P operator



Hilbert space representations: H = L2(m, s, d , b)

• {(m, s; d)p, ŝc · n̂} (Instant form )

• {(m, s; d)v, ŝc · n̂} (Point form)

• {(m, s; d)p, ŝh · ẑ} (Jacob-Wick helicity )

• {(m, s; d)p+,p⊥, ŝf · n̂} (Front form)

•
...

Spectrum of b in irreducible subspaces fixed by group theory.

Different basis choices are related by unitary transformations.



Irreducible representations

U(Λ, a)|(m, s, d)b〉 =
∑
b′

∫
db′|(m, s, d)b′〉Dm,s

b′b (Λ, a)

Dm,s
b′b (Λ, a) = 〈(m, s, d)b|U(Λ, a)|(m, s, d)b′〉

∑∫
db′Dm,s

bb′′(Λ2, a2)Dm,s
b′′b′(Λ1, a1) = Dm,s

bb′ (Λ2Λ1,Λ2a1 + a2)



Structure of Dm,s
b′b (Λ, a)

Depends on basis choice

δ(b′ −ΛΛΛ(b))|∂(ΛΛΛ(b))

∂(b)
|

1
2 e i(Λp)·aDs

µν [Λ−1
x (Λp)ΛΛx(p)]

Example b = {p, sc} - (Instant form)

δ(p′ −ΛΛΛ(p))|ωm(p′))

ωm(p)
|1/2e i(Λp)·aDs

µν [Λ−1
c (Λp)ΛΛc(p)]



Dynamics non-trivial

[K i ,P j ] = iδijH = iδij(H0 + V )

Kinematic subgroups K

(Λ, a) ∈ K ⇔ Dm,s
b′b (Λ, a) independent of m

K depends on basis

b = {p, ŝc · n̂} K = 3 dimensional Euclidean group

b = {v, ŝc · n̂} K = Lorentz group

b = {p+,p⊥, ŝf · n̂} K = subgroup preserving x+ = 0



Lorentz covariant relativistic quantum mechanics
(Hilbert space representations with kernels)

Ds
µν [R] = 〈s, µ|e i

θθθ
2
·σσσ|s, ν〉 entire function of θθθ

∑
α

Ds
µα[R2]Ds

αν [R1]− Ds
µν [R2R1] = 0

〈s, µ|s1, µ1, s2, µ2〉Ds1
µ1ν1

[R]Ds2
µ2ν2

[R]〈s1, ν1, s2, ν2|s, ν〉−Ds
µν [R] = 0

Ds1
µ1,ν1

[R]Ds2
µ2,ν2

[R]−
∑
sµν

〈s1, µ1, s2, µ2|s, µ〉Ds
µν [R]〈s, ν|s1, ν1, s2, ν2〉 = 0

Valid for complex angles by analytic continuation



U(Λ, a)|(m, s, d)p, µ〉 =∑
ν

|(m, s, d)ΛΛΛp, ν〉e iΛp·aDs
νµ[Λ−1

x (Λp)ΛΛx(p)]

√
ωm(ΛΛΛp)

ωm(p)

Decompose Wigner rotation

∑
ναβ

|(m, s, d)ΛΛΛp, ν〉e iΛp·aDs
να[Λ−1

x (Λp)]Ds
αβ[Λ]Ds

βµ[Λx(p)]

√
ωm(Λp)

ωm(p)

Multiply on right by
√
ωm(p)Ds

αµ[Λ−1
x (p)]

⇓

U(Λ, a) |(m, s, d)p, α〉
√
ωm(p)Ds

αµ[Λ−1
x (p)]︸ ︷︷ ︸

|(m,s)p,µ,d〉cov

=

∑
ν

∑
α

|(m, s, d)ΛΛΛp, α〉
√
ωm(ΛΛΛp)Ds

αµ[Λ−1
x (Λp)]︸ ︷︷ ︸

|(m,s)Λp,ν,d〉cov

e iΛp·aDs
νµ[Λ]



Lorentz covariant representations of the Poincaré group

U(Λ, a)|(m, s)p, µ, d〉cov = |(m, s)Λp, ν, d〉cove iΛp·aDs
νµ[Λ]

Hilbert space inner product

non-trivial dynamical kernel

〈ψ|φ〉 =
∑∫

〈ψ|(m, s)p, µ〉dp〈(m, s)p, µ|φ〉 =

∑∫
〈ψ|(m, s)p, µ〉cov

dp

ωm(p)
Ds
µν [Λx(p)Λ†x(p)]cov 〈(m, s)p, ν|φ〉

∑∫
〈ψ|(m, s)p, µ〉cov2d4pδ(p2 + m2)θ(p0)Ds

µν [σ · p]cov 〈(m, s)p, ν|φ〉

Λx(p)Λ†x(p) = Λc(p)Rm(p)R†m(p)Λ†c(p) = Λ2
c(p) = eρρρ·σσσ = p · σ



Comments

(R†)−1 = R (Λ†)−1 6= Λ

Leads to two inequivalent Hilbert space kernels:

Km,s
r (p, µ, ν) := 2δ(p2 + m2)θ(p0)Ds

µν [σ · p]

Km,s
l (p, µ, ν) := 2δ(p2 + m2)θ(p0)Ds

µν [σ · Πp]

Π = space reflection

The kernels are familiar - Km,s
l/r (p, µν) = two-point

Wightman function for a spin-s right or left handed free
field.



Summary: Poincaré covariant reps. ⇒ Lorentz covariant
reps.

• Start with irreducible representations of the Poincaré
group in an L2 Hilbert space of functions of eigenvalues
commuting functions of the Poincaré generators.

• Use analyticity of the Wigner rotations to factor the
Wigner rotations to construct Lorentz (SL(2,C))
covariant representation of the Poincaré group.

• Hilbert spaces have kernels - space reflection does not
commute with the kernels - the direct sum of right- and
left-handed kernels can be used to get a Lorentz
covariant representation of space reflection.

• Kernels are independent of original basis choice.

• Kernels are familiar Wightman distributions.



Relation of Poincaré covariant wave functions to Lorentz
covariant wave functions - spin choice “x ′′ enters in
boost:

x〈(m, s, d)p, µ|ψ〉 =
∑
ν

Ds
µν [Λ†x(p)]√
ωm(p)

cov ,r 〈(m, s, d)p, ν|ψ〉|p0=ωm(p)

x〈(m, s, d)p, µ|ψ〉 =
∑
ν

Ds
µν [Λ−1

x (p)]√
ωm(p)

cov ,l〈(m, s, d)p, ν|ψ〉|p0=ωm(p)



Euclidean covariant representations of the Poincaré group

Some definitions:

σeµ = (iσ0,σσσ)

pµe = (−ip0,p)

Pe := pµe σeµ =

(
ip0

e + p3 p1 − ip2

p1 + ip2 ip0
e − p3

)
det(Pe) = −(p0

e )2 − p2

P := pµσµ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
det(P) = (p0)2 − p2



Complex orthogonal group ∼ complex Lorentz group

P ′e = APeB
t det(A) = det(B) = 1 orthogonal

P ′ = APBt det(A) = det(B) = 1 Lorentz

Oµ,ν =
1

2
Tr(σ†eµAσeνB

T ) Λµ,ν =
1

2
Tr(σµAσνB

T )

• B = A∗ = real Lorentz transformations

• A,B unitary = real orthogonal transformation

• A,B ∈ SL(C) = complex orthogonal transformation;
complex Lorentz transformation.



• Real Lorentz group ∼ complex subgroup of complex
orthogonal group

• Real orthogonal group ∼ complex subgroup of complex
Lorentz group

• Euclidean and Poincaré generators related by related by

Hm = iHe Kc · n̂ = −iJen̂,x0
e

• Euclidean and Poincaré generators cannot both be
self-adjoint on the same representation of the Hilbert
space.



Define the irreducible Euclidean covariant kernels

Km,s
e,r/l(xe − ye ;µ, ν) :=

∫
d4peK

m,s
e,r/l(pe , µ, ν)e ipe ·(xe−ye)

Km,s
e,r (pe , µ, ν) :=

1

π

Ds
µν [pe · σe ]

p2
e + m2

Km,s
e,l (pe , µ, ν) :=

1

π

Ds
µν [Πpe · σe ]

p2
e + m2



• These kernels transform covariantly under spin s
representations of the 4-d orthogonal transformations.

• Define θ(x0
e , x) = (−x0

e , x) = Euclidean time reflection.

• Replacing Km,s
e,r/l(xe − ye ;µ, ν) by Km,s

e,r/l(θxe − ye ;µ, ν)

makes the Hm and Kc · n̂ Hermitian with respect to the
quadratic form with this kernel.

• The resulting sesquilinear form has negative norm
vectors on the space of Euclidean test functions (x0

e even
and odd functions cannot both have positive norm).



• The sesquilinear form can be made positive by projecting
on a suitable subspace.

(O.S.) Subspace = Schwartz functions in Euclidean
space-time variables with support for positive relative
Euclidean times.

• The projection of Km,s
e,r/l(θxe − ye ;µ, ν) on spinor functions

with positive Euclidean time support is non-negative. It
can be completed to construct a new Hilbert space
representation, H

• The Euclidean kernels, Km,s
e,r/l(xe − ye ;µ, ν), are reflection

positive:

Π+ΘKΠ+ ≥ 0 = reflection positivity



On H the Poincaré generators (s = 0 case) are self-adjoint:

HΨ(xe) =
∂

∂x0
e

Ψ(xe)

PΨ(xe) = −i ∂
∂xe

Ψ(xe)

JΨ(xe) = −ix×∇∇∇xΨ(xe)

K jΨ(xe) = (x j
∂

∂x0
e

− x0
e

∂

∂x j
)Ψ(xe).

• In this representation the wave functions involve
Euclidean times, there is no analytic continuation!

• Generators have the same form in dynamical theories -
only the Euclidean Green functions change.



These generators are self-adjoint on H.

• P, J generate one parameter unitary groups.

Positive Euclidean time translations and rotations in
Euclidean space-time planes are used to construct the

Hamiltonian and Lorentz boost generators

• H generates a contractive Hermitian semigroup under x0
e

translations.

• K generates a local symmetric semigroup under
rotations in x0

e , x
i planes.

• All have self-adjoint generators by Stone’s theorem and
extensions.



Domains for local symmetric semigroups



Hilbert space inner product on H:

〈f |g〉 := (f ,ΘKg) =

1

π

∫
f ∗(xe , µ)

Ds
µν [pe · σe ]

p2
e + m2

e ipe ·(θxe−ye)g(ye , ν)d4ped
4xed

4ye

Integrate over p0
e - use the support condition to close the

contour in the lower half plane

〈f |g〉 =

∫
d4xed

4ye f
∗(xe , µ)

e−ωm(p)(x0
e +y0

e )+ip·(x−y)

(2π)3

dp

ωm(p)
Ds
µν [p·σ]g(ye , ν)



Relation to Poincaré covariant and Lorentz covariant
representations

∫
f ∗(xe , µ)Km,s

e,r (θx − y ;µν)g(ye , ν)d4xed
4ye =∫ (∫

d4xe f
∗(xe , µ)e−ωm(p)x0

e
e ip·x

(2π)3/2

)
︸ ︷︷ ︸

〈ψ|(m,s)p,µ〉cov

dp

ωm(p)
Ds
µν [p · σ](∫

d4yeg(ye , ν)e−ωm(p)y0
e
e−ip·y

(2π)3/2

)
︸ ︷︷ ︸

cov 〈(m,s)p,ν|φ〉



The right and left handed wave functions in Lorentz
covariant, Euclidean covariant and Poincaré covariant
representations are related by:

cov ,r 〈(m, s)p, ν|φ〉|p0=ωm(p)
=∫

d4yeg(ye , ν)e−ωm(p)y0
e
e−ip·y

(2π)3/2
=√

ωm(p)Ds
µν [Λ−1

x (p)]x〈(m, s)p, ν|φ〉

cov ,l〈(m, s)p, ν|φ〉|p0=ωm(p)
=∫

d4yeg(ye , ν)e−ωm(p)y0
e
e−ip·y

(2π)3/2
=√

ωm(p)Ds
µν [Λx(p)]x〈(m, s)p, ν|φ〉



x〈(m, s)p, ν|φ〉, cov 〈(m, s)p, ν|φ〉, and g(ye , ν)

• All represent the same physical state in different Hilbert
space representations.

• These relations hold for free particles of irreducible basis
states of an interacting theory.



Euclidean representation - properties

• Calculations of physical inner products can be performed
directly in the Euclidean representation without analytic
continuation.

• Reflection positivity gives both a positive norm and the
spectral condition H ≥ 0.

• The representation of the Poincaré generators are the
same for dynamical or non-interacting theories. The
dynamics enters in the Euclidean kernel.

• For gauge theories the above considerations only apply
to gauge invariant states.

• Because of the time reflection in the kernel, delta
functions are normalizable states on H!



Dynamics - models

General considerations

• The general dynamical problem is to decompose the
unitary representation of the Poincaré group into a
direct integral of irreducible representations.

• The first step is to construct the dynamical unitary
representation of the Poincaré group.

• The second step is to decompose U(Λ,A) into a direct
integral of representations labeled by mass, spin and
degeneracy parameters.

• It is natural to start with a model of non-interacting
particles. Interactions are then added that should the
preserve positivity of the Hilbert space norm, the
unitarity of the representation of Poincaré group, the
spectral condition, cluster properties. and should allow
scattering.



Poincaré covariant dynamics (N = 2)
(generalized Bakamjian-Thomas construction)

• Use Clebsch-Gordan coefficients of the Poincaré group

〈(m1, s1)b1, (m2, s2)|(m12, s12)b12, d12〉

to decompose the two-body Hilbert space into a direct
intergal of irreducible representations in the same basis
(b).

• Add interactions to the mass that (1) commute with b,
(2) are independent of b (3) commute with the free
two-body spin and (4) preserve the spectral condition.

• Diagonalize the interacting mass in the free irreducible
representation.

• Simultaneous eigenstates of interactng mass, free spin
and free vector variables (b) transform irreducibly,
defining a relativistic two-body dynamics



Realistic model interactions = (N = 2)

|(m12, s12)b12, d12〉 → |(k, j)p, µ; l , s〉

〈(k ′, j ′)p′, µ′; l ′, s ′|Vnn|(k , j)p, µ; l , s〉 =

δ(p′ − p)δj ′jδµ′µ〈k ′, l ′, s ′‖V j
nn‖k , l , s〉

M =
√
m2

1 + 2mr (k2/2mr + Vnn) +
√
m2

2 + 2mr (k2/2mr + Vnn)

• Eigenstates of Hnr are eigenstates of M.

• Relativistic S-matrix fits same 2-body CM data as NR
2-body S-matrix (invariance principle)!

Sexp = Snr = lim
t→∞

e iH0te2iHnr e iH0t = lim
t→∞

e iM0te2iMte iM0t = Sr

• Construction violates cluster properties for N ≥ 3.



Poincaré covariant dynamics (Sokolov construction)
(2→ 3 - cluster properties - fixed up to 3BF)

• N=3 Take tensor products of N=2 with N=1. Use
unitary scattering equivalence to transform to
representations with free three-body spin.

• Add the transformed 2+1 interactions to the free
three-body mass. Use Poincaré group Racah coefficients
to put is a common basis.

• Multiply the result by a symmetrized product of the
inverse of the 2+1 unitary scattering equivalences.

• This construction gives a dynamical unitary
representation of the Poincaré group satisfying cluster
properties, spectral condition, and fits experimental
two-body data.



Sokolov construction (N = 3 example)

H =

e
∑

lnA†
ij,k

(∑
(Aij ,kHij ⊗ HkA

†
ij ,k − 2H1 ⊗ H2 ⊗ H3 + V123

)
e
∑

lnAij,k

• Method preserves Poincaré invariance, cluster properties
and spectral condition (for suitable interactions).

• Preserves kinematic subgroup (for suitable interactions).

• Aij ,k generates frame-dependent many interactions.

• Resulting spin is dynamical.

• Recursive construction is messy, result depends on
choice of Aij ,k , connection with QFT not direct.



Lorentz covariant constraint dynamics (method I)

Add interactions to Wightman functions

• Treat Ci := p2
i + m2

i = 0, p0
i > 0 as first class

constraints.
K =

∏
i

δ(Ci )

• Add Lorentz covariant interactions Ci → C ′i = Ci +
∑

j Vij

so C ′i are compatible constraints (first class)

[C ′i ,C
′
j ] = fijkC

′
k ⇒ K ′ = Πδ(C ′i )

• Two-body interactions satisfying first class condition:

[Vij , p
2
i − p2

j ] = 0

• K ′ are model Wightman functions - normally imposed by
solving coupled Dirac or Klein Gordon equations. The
first class condition is an integrability condition.
• First class constraints satisfying cluster properties for
N > 2 not known.



Lorentz covaraint Schwinger-Dyson equations (method II)

• Solutions are matrix elements of time-ordered products
of fields.

• Key requirement - ∃ complete sets of positive energy
intermediate states (plus vacuum) bewteen all operators
and states.

• This is where the direct integral of irreducible
representations appears.

• Using the integral representation of the Heaviside
function with the direct integral leads to poles
associated with the energies of the intermediate states:

θ(t) =
1

2πi

∫
e ist

s − iε



• Residues of the (double) poles have the general strufture

〈0|T (Πφi (xi ))|(m, s)b〉〈(m, s)b|O|(m′, s ′)b′〉〈(m′, s ′)b′|T (Πφj(xj))|0〉

• The matrix elements of any operator
〈(m, s)b|O|(m′, s ′)b′〉 in irreducible eigenstates can be
extracted using a normalization condition to eliminate
the “wave functions” 〈(m, s)b|T (Πφj(xj))|0〉.

• Equations are non-linear - but the solutions can be
expressed as moments of a path integral.

• The connection with the general requirements of
relativistic quantum theory is not direct. This makes it
difficult to determine what properties are preserved
under truncation.

• The method has a natural connection with the S matrix.
Bogoliubov’s S-matrix axioms may be easier to check.



Euclidean covaraint dynamics

• Direct connection with Lagrangian field theory. The
Euclidean kernels (before time reflection) are moments
of a Euclidean path integral.

• They satisfy non-linear Euclidean Schwinger-Dyson
equations.

• The connection with a relativistic quantum field theory
is more straightforward in the Euclidean case - reflection
positivity, Euclidean covariance and cluster properties
are the requirements for a relativistic quantum theory.

• For gauge theories reflection positivity is only needed for
gauge invariant intermediate states.



Things to think about

• The Euclidean representation has a Minkowski
interpretation provided we use the Euclidean time
reflection operator and Euclidean states with positive
relative Euclidean time support.

• Analytic continuation is not needed, and there are
explicit representations of all 10 Poincaré generators in
the Euclidean representaion. These generators are self
adjoint.

• Four dimensional delta functions are square integrable in
the Euclidean representation - this may facilitate
numerical calculations.

• Locality logically independent of the other Euclidean
Axioms.



• The requirements of reflection positivity need to be
better understood - for example what are sufficient
conditions on Euclidean Bethe-Salpeter kernels for G to
be reflection positive

G−1 =
∏

Gi
−1 −

∑
Kij −

∑
Kijk

• Conditions on Kij , Kijk so G is reflection positive?



• By giving up locality it is possible to have different
N-point Green functions (i.e. G (1 : 3),G (2 : 2),G (3 : 1))
corresponding to different numbers of initial and final
particles). This makes the reflection positivity constraint
easier. In a local theory these are related by analytic
continuation.

• Haag-Ruelle scattering can be directly formulated in the
Euclidean representation.

• Light front generators are given by complex differential
operators, p+ := ∂

∂x0
e
− i ∂

∂x3

these should be self adjoint on H.



Thanks to the organizers!


