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Introduction
®0

Superfluidity in neutron stars

Theoretical predictions:
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Introduction
oce

This work

Consequence of superfluidity:

several dynamically distinct fluids inside NSs,
coupled through both dissipative and non-dissipative effects.

Questions:

What is the impact of general relativity on
the non-dissipative couplings between the fluids 7
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Introduction
oce

This work

Consequence of superfluidity:

several dynamically distinct fluids inside NSs,
coupled through both dissipative and non-dissipative effects.

Questions:

What is the impact of general relativity on
the non-dissipative couplings between the fluids 7

Are general-relativistic effects important on
the global dynamics of giant pulsars glitches ?
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Superfluid NSs at equilibrium

© Equilibrium configurations of superfluid NSs
@ Model assumptions
@ Fluid couplings
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Superfluid NSs at equilibrium

e0

Assumptions & ingredients e w . pro. 2005 & souic e o PRD, 2016

Equilibrium configurations:
@ T =0 and no magnetic field,
@ dissipative effects are neglected,

@ uniform composition: p,e~,n
~~ the crust is not included,

@ asymptotically flat, stationary,
axisymmetric & circular metric,

@ rigid-body rotation: ,, {2,
~~ global model.
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Equilibrium configurations:
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Superfluid NSs at equilibrium
®0

Assumptions & ingredients

Equilibrium configurations:

T = 0 and no magnetic field,
dissipative effects are neglected,

uniform composition: p,e ,n
~~ the crust is not included,

asymptotically flat, stationary,
axisymmetric & circular metric,
rigid-body rotation: Q,, Q,
~~ global model.

The neutron star is thus described by two perfect fluids:

--» a neutron superfluid and a fluid of charged particles

PHAROS WG1+WG2 meeting
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Superfluid NSs at equilibrium
oce

Equations of state

m Polytropic EoSs,
m Density-dependent RMF models (DDH & DDHY).

PSR J0348+0432
T
PSR J1614-2230

~15¢

> DDH3 - 0 Hz

= - DDH3- 716 Hz < A2
0] — DDH-0Hz (n n )
= 1/ — DDH-716Hz Mg “es
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Superfluid NSs at equilibrium
©0000

Fluid angular momenta

~~ Komar angular momentum (axisymmetry):
Jk=h+

see Langlois, Sedrakian & Carter, MNRAS, 1998.
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Superfluid NSs at equilibrium
©0000

Fluid angular momenta

~~ Komar angular momentum (axisymmetry):
Jk=h+

see Langlois, Sedrakian & Carter, MNRAS, 1998.

Moments of inertia:

dix = Ixx dQx + Ixy dQy X, Y e {n, p}

~

Ix = Ixx + Ixy F=T, 41,
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Superfluid NSs at equilibrium
©0000

Fluid angular momenta

~~ Komar angular momentum (axisymmetry):
Jk=h+

see Langlois, Sedrakian & Carter, MNRAS, 1998.

Moments of inertia:
dix = Ixx dQx + Ixy dQy X, Y e {n, p}
Ix = Ixx + Ixy F=T, 41,

--» Ixy contains any possible non-dissipative couplings
between the fluids.
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Superfluid NSs at equilibrium
©®000

Angular momentum of fluid X

In the slow-rotation approximation and to first order in the lag
082 = Q, — €, we get:

Ix =~ th nx,ux%(QX —w)r?sin?g &3V

+f2f nxluxe)(% (Qy — Qx) r?sin?0 da3v
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Superfluid NSs at equilibrium
©®000

Angular momentum of fluid X

In the slow-rotation approximation and to first order in the lag
082 = Q, — €, we get:

Ix =~ th nxux%(QX —w)r?sin?g &3V

+ th nxluxe)(% (Qy — Qx) r?sin20 3V

m entrainment effect m relativistic frame-dragging effect
due to the strong interactions associated with the rotation of
between nucleons in the core: the two fluids, 2, and Q,:

Andreev & Bashkin, SJETP, 1976 Carter, Annals of Physics, 1975 )
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Superfluid NSs at equilibrium
©0e00

Fluid couplings

Angular momentum of fluid X:
Ix = /nx,uX%r2 sin20 3V x Qx
+/sx nxpX B r? sin20 d*V x (Qy — Qx)

f/;unxux%rzsinzﬂ a?v
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Superfluid NSs at equilibrium
©0e00

Fluid couplings

Angular momentum of fluid X:

JX = /nX,uX%rz sin20 d3V X QX ~y IXQX
+/sx nxpX B r? sin20 d*V x (Qy — Qx)

f/;unxux%rzsinzﬂ a?v

o Ix = “moment of inertia” of fluid X --» [ pxr?sin®0d°V
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Superfluid NSs at equilibrium
©0e00

Fluid couplings

Angular momentum of fluid X:

JX = /nX,uX%rz sin20 d3V X QX ~y IXQX
+/sx nxpXBr2sin? 0 *V x (Qy — Qx)  ~ Ixéx (Qy — Q)

f/;unxux%rzsinzﬂ a?v

o Ix = “moment of inertia” of fluid X --» [ pxr?sin®0d°V

@ cx = entrainment parameter averaged over the star.
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Superfluid NSs at equilibrium
©0e00

Fluid couplings

Angular momentum of fluid X:

JX = /nX,uX%rz sin20 d3V X QX ~y IXQX
+/sx nxpXBr2sin? 0 *V x (Qy — Qx)  ~ Ixéx (Qy — Q)

—/ nx X 212 sin 20 &*v = x (55 x + 23 Qy)

o Ix = “moment of inertia” of fluid X --» [ pxr?sin®0d°V
@ £x = entrainment parameter averaged over the star.

o =i} & =4l = contribution of fluids Y and X on Lense-Thirring

effects on X.
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Superfluid NSs at equilibrium
JSJeTeY To)

Entrainment VS frame-dragging

In the general-relativistic framework, one thus gets:

Ix =l (1= 2Bk = 8x) @x + Ix (Ex — <55 ) Qv }
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Superfluid NSs at equilibrium
JSJeTeY To)

Entrainment VS frame-dragging

In the general-relativistic framework, one thus gets:

Ix =l (1= 2Bk = 8x) @x + Ix (Ex — <55 ) Qv }

@ In the Newtonian limit (see, e.g., Sidery+, MNRAS, 2010):
Ix = Ix (1 —£x)Qx + IxExQy

--» the fluids are only coupled by entrainment.
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Superfluid NSs at equilibrium
JSJeTeY To)

Entrainment VS frame-dragging

In the general-relativistic framework, one thus gets:

Ix =l (1= 2Bk = 8x) @x + Ix (Ex — <55 ) Qv }

@ In the Newtonian limit (see, e.g., Sidery+, MNRAS, 2010):
Ix = Ix (1 —£x)Qx + IxExQy

--» the fluids are only coupled by entrainment.

e In GR: additional coupling through frame-dragging effects.
--» already pointed out by Carter, Annals of Physics, 1975
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Superfluid NSs at equilibrium
ooooe

Entrainment VS frame-dragging

Total coupling coefficients:

A 0.45
EX = IXY/ (IXX + IXY) Qn /27 = Qp/z7r —11.19 Hz /
0.40 s
In the slow-rotation approximation: —
0.35
/ _;::
= LT 0.30 .
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P— 1 _ LT _ -IT N
1—¢e5p —Enp 0.25 Lo E? ——
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Remarks: 0157 = ” " = >
~ Mg (M.)

@ in Newt. gravity: éx = £x

o &y =1,/I, x&,~005x2,
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Superfluid NSs at equilibrium
ooooe

Entrainment VS frame-dragging

Total coupling coefficients:

A 05
Ex = Ixy/ (Ixx + Ixv) Q /o
m=Qp/2r =11.19 Hz
o4 n/ p/ T
: e______.ae————‘—'ek——'
. . . . e’/”
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PHAROS WG14+WG2 meeting University of Coimbra - September, 27th 2018



Applications to pulsar glitches

© Applications to the dynamics of giant glitches
@ Transfer of angular momentum
@ Impact of GR on the dynamics of pulsar glitches

PHAROS WG14+WG2 meeting University of Coimbra - September, 27th 2018



Applications to pulsar glitches

@000

Vortex—med|ated glitch theory

" A Qn
.a_) \
@ Charged particles: E
Q, = Q < pulsar qf Q,
s
@ Superfluid neutrons: >
C
Qn 2 Q ° .

time

Key assumption: the vortices can pin to the crust and/or to flux tubes.
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Applications to pulsar glitches
®000

Vortex—med|ated glitch theory

ature, 1975

Two- fIU|d model

N
Baym et al., Nature, 1969 0 Qn
<
0 =
@ Charged particles: 8
o
Q, = Q < pulsar > Q, -
&
@ Superfluid neutrons: ES
S ~
Q2 Q, R
time

Once a critical lag 2, — €2, is reached:

some vortices get unpinned and are allowed to move radially

--» angular momentum transfer between the fluids
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Applications to pulsar glitches
000

Angular mo
La ois et al

mentum transfer

S, 1998 & Sidery e

Q, — Q, = §Qp = the dynamics is governed by mutual friction forces J
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Applications to pulsar glitches
000

Angular momentum transfer

al., S, 1998 & Sidery et al,

Q, — Q, = §Qp = the dynamics is governed by mutual friction forces J

Assuming straight vortices, the mutual friction moment considered reads

R N
Fine = / 1+ R2 ™ r nnwnXJ_ dXx x ( Qp) = —-2B1,Q2,¢ x §Q
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Applications to pulsar glitches
000

Angular momentum transfer

al., S, 1998 & Sidery et al,

Q, — Q, = §Qp = the dynamics is governed by mutual friction forces J

Assuming straight vortices, the mutual friction moment considered reads

lag -\

R N
Fine = / 1+ R2 ™ r nnwnXJ_ dXx x ( Qp) = —-2B1,Q2,¢ x §Q
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Applications to pulsar glitches
000

An uIar momentum transfer

Q, — Q, = §Qp = the dynamics is governed by mutual friction forces J

Assuming straight vortices, the mutual friction moment considered reads

lag -\

R N
Fine = / 1+ R2 ™ r nnwnXJ_ dXx x ( Qp) = —-2B1,Q2,¢ x §Q

superfluid vorticity
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Applications to pulsar glitches
000

Angular momentum transfer
&

Q, — Q, = §Qp = the dynamics is governed by mutual friction forces J

Assuming straight vortices, the mutual friction moment considered reads

resistivity

coefficient -\ lag '\
R Y x (= Q 31,9 Q
Fine = 1+R2r aM@n X1 dZ X (Qn — p) = —2B1,Q,¢ x §

superfluid vorticity
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Applications to pulsar glitches
000

Angular momentum transfer

al., S, 1998 & Sidery et al,

Q, — Q, = §Qp = the dynamics is governed by mutual friction forces J

Assuming straight vortices, the mutual friction moment considered reads

resistivity

coefficient -\ lag '\

R N
Fine = / 1+ R2 ™ r nnwnXJ_ dXx x ( Qp) = —-2B1,Q2,¢ x §Q

superfluid vorticity -/ mean mutual j

friction parameter
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Applications to pulsar glitches
000

Angular momentum transfer

al.,, MNRAS, 1998 & Sidery et al., AS, 2010

Q, — Q, = §Qp = the dynamics is governed by mutual friction forces J

Assuming straight vortices, the mutual friction moment considered reads

resistivity

coefficient -\ lag '\

R N
Fine = / 1+ R2 ™ r r’n'lUnXJ_ dXx x ( Qp) = —-2B1,Q2,¢ x §Q

superfluid vorticity -/ mean mutual j

friction parameter

~~ the geometry of the vortex array and the interactions between
superfluid vortices and superconducting flux tubes are poorly known.
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Applications to pulsar glitches
[e1e1 Yo

Spin-up time scale

Evolution equations:

= A T 50 i )
{ -jp - I—int~ = 5O _71 x 2BCQ"

» Theoretical rise time:

s 0Q(t) = 60 x e T = TP x
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Applications to pulsar glitches
[e1e1 Yo

Spin-up time scale

Evolution equations:

-jn = + rint7 - m —
{72t S [P

—
©
I

» Theoretical rise time:

s 5Qt) = 6 x e T,:Tpxi

» Numerical modelling:
hyp.: hydrodynamical time ~ 0.1 ms < rise time (dissipation)

--» Computation of Q,(t) & Q,(t) profiles from Q, o > Q, ¢ using
a quasi-stationary sequence of equilibrium configurations.
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Applications to pulsar glitches
ocooe

Time evolution

AQ/Q=10"%, Qf = Qf =27 x 11.19 Hz,
Mg=14M, & B=10"*

1.2x10° = 10
Q N
S Q, S DDH - numerics +
1x10°® 10°} i 1
T \ Y fit.t,=428s —
Zof \ DDHS3 - numerics
Q) £qy \
) 3 N fittt,=2.92s — —|-q

8x107 - &

6x107 [
X 407 / 8
& 4x10 / g 10 \ \\
i ] \

2x107 Hj DDHS --- 10 \\ N

oy DDH — \ \
\
1070
3 20 30 40 50 60

0
P
\\
-Q (rad s‘1)
n~>%p
=)
o
4
&
&

-0/

P
okl T 2 . 2
0 5 10 15 20 25 0 0 10
t(s) t(s)
--> the spin-up time scale can be very precisely estimated
from stationary configurations only.
University of Coimbra - September, 27th 2018
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Applications to pulsar glitches
°

Influence of general relativity on 7,

newt ] / ’C?R

_fcr

GR
r

05 .
...
041 | EoS| -=- o
x4
sl EoS Il e
,’./
0.2 s
/””
0.1 e
o \-\
0.0 \
-0.1
Q/27 = 10 Hz \
-0.2
0 0.05 0.1 0.15 0.2

—
o)
=

0.25

> polytropic EoSs

> compactness parameter:

G Mg
R eqC?

NB: for NSs, = ~ 0.2

> these relative differences
also depend on 2

--> GR can have a large impact on the dynamics of pulsar glitches! )
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@ Conclusion
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Conclusion
°0

Conclusion & perspectives

@ Additional coupling through relativistic frame-dragging effects,
@ Relativistic corrections on the spin-up time: ~ 50% (core),

< should be included in a quantitative model of glitches.

Future work:

plpg (core)
0.5 1 15 2 25 3

inner crust ——

core -=-—

» Build a local model in which only a small '2
part of the superfluid is decoupled from the
rest of the star (differential rotation),

m, / my, (inner crust)

» Take the crust into account!

0 0.1 02 03 04 05
plpg (inner crust)

Antonelli & Pizzochero, 2017
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Thank youl
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Influence of general relativity on 7,
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Spacetime metric

Bonazzola, Gourgoulhon, Salgado & Marck, A&A, 1993

Rotating neutron stars, at equilibrium, described by (£, g):
@ asymptotically flat: g — n at spatial infinity (r — +00),
o stationary & axisymmetric: 2822 — 9825 _
ot Oy !
@ circular: perfect fluids = purely circular motion around the rotation

axis with Q,, ©, (+ rigid rotation).

Spacetime metric in quasi-isotropic coordinates:

Gop AxV dx? = —N2dt? + A%(dr? + r* d6?) + B?r?sin §(dp — wdt)?

At spatial infinity

N,AAB—1 & w—0
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Metric potentials
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Relativistic two-fluid hydrodynamics

ideal fluid or solid media", 1989 & Carter & Lan

Carter, " ant theory of conductivity in

System = two perfect fluids:

@ superfluid neutrons — iy, = nyy,
@ protons & electrons  — i, = n,tp,.
”

Energy-momentum tensor

Taﬁ = nnap?a + npapg + wgoc,B
< conjugate momenta

Equation of state

Entrainment matrix:

p?y = Knnnn + ]Cnpng 2
{ ph = }Cpnng+/cppng &E(nn, np, A7)

--» entrainment effect

University of Coimbra - September, 27th 2018
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341 formalism

Foliation of the spacetime (£, g) by
(X¢t);er, with unit normal 7 J

Eulerian observer O, : 4-velocity = i

@ lapse function N : i = —Net,
@ shift vector 5: 9, = N7 + 3.

X! = const.

341 metric:

Zop dx¥ dx? = —N2dt? 4~ (dx' + 87 dt) (dxd + B dt)

PHAROS WG14+WG2 meeting University of Coimbra - September, 27th 2018



Numerical procedure

Parametres d’entrée :

e une EOS
o HI, HP At each iteration

* Qn, Oy For given values of (u", uP, A?),
i we compute:
v ~ 1. ¥, n,, np and a from the EoS
Initialisation : .
2. The source terms E, p,, S';,
e N=A=B=1etw=0,Y(r,0) ) ] )
¢ Up=U,=0 3. Einstein Equations are solved,
. Hi(r0) =Hci(1—;—22) 4. Kinetic terms U; et I,
Y, _ .
5. Computation of H;_ ;.

Convergence threshold

’HII;Jrl(rve) - Hli(rv 9)‘ <¢€
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Density profiles

N w

=y

particle densities (0.1 fm'a)

Mg = 1.4 Mg, Qn/2m = Qp/2m = 716 Hz

“\ neutrons

0=

Grav. potential

/2 —

DDH

2 [km)
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£
i ] E 100
;c 0.90 1
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4 ! 1 14Mg —
0.70 F 0 =m/2 i
0 7 5 8 0 0 2 7 6 8 10
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Q" /2w = QP /27 =716 Hz J
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Angular momenta

Axisymmetry < ¥ )

Komar definition:

Eulerian observer ii (3+1)

Angular momentum of each fluid

Langlois, Sedrakian & Carter, MNRAS, 1998

Py = rnnnp::; + rp"ppg
—_—— ——

i J®

Ix :/ Jjy A’Br’sinfdrdfdy
e
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Fluid couplings

Q,/2n=0Hz
10 10° 10* 10% 102 10" 10° 10
Q, /21 [Hz]
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Influence of €2 on the couplings

0.2 0.20
P~
0.1 —
R A 0.15 I
0.0 TN \ N A\
0.1 o 010
EoS I: ép —— \ w

0.2 & \ ——
03} | Eos e, = \ 0.05 ™

g —-—
p oo, =

\ 0.00
0 10 100 1000 0.1 1 10 100 500
Q/ (2m) (Hz) Q/(2n) (Hz)
Newtonian gravity general relativity
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Where does the vortex unpinning take place?

Glitches have been generally thought to originate from the crust, because:
m the core superfluid was expected to be strongly coupled to the crust
Alpar et al., ApJ, 1984

m the analysis of glitch data suggested that the superfluid represents a
few percent of the total angular momentum of the star Link et al, PRL,
1999
However, this scenario has been recently challenged:

> considering entrainment effects, the crust does not carry enough
angular momentum Andersson et al., PRL, 2012 & Chamel, PRL, 2013

> a huge glitch has been observed in PSR 2334461 Aipar, AIP Conf.Proc.,
2011

» the core superfluid could be decoupled from the rest of the star, if
vortices are pinned to flux tubes Gigercinoglu & Alpar, ApJ, 2014

The core superfluid plays a more important role than previously thought. J
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Gravitational wave amplitude

P o . _t
h(t)=-3 sin? DC,, @ = hgsin®i e 7 J
1026 : :
327 Hz —e— Pies
1028} 65 Hz ”"
11.19 Hz —— Joted
2 Hz —a ot
1030 . e D=1 kpc,
© 4032 A"” ¢ . o B= 10_3,
= 10 T $ote
¥ L7
10734 ’/f ’»/” o MG =14 M@,
¥
T L @ DDH EoS.
10738 4 .- —mt
/”” 4"’—
10738 o
10® 107 10% 10° 10* 10° 102 107 10°
AQ/Q

“1, 2 \2
~ = D B Q 4 (AQ/Q
ho ~1.0 x 10-% (1 kpc> (10*3) (o rads—) ( Tos ) ’
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Entrainment effects

Dynamical effective mass:

— in the rest frame of the second fluid.

Zero-velocity frame: 0.6
0.5
special relativity oal .‘ Ep
© 03 [ ]
my = pJX x (1 -E )
02f // ]
H j 0.1r ,:": e* i ]
entrainment —
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The Vela pulsar

AQ/Q=107% Qf = Qf =27 x 11.19 Hz

| [DDH - =~
107+ | DDHS —o— B
TSR SLLEE EE
-3
10 s
A=-=-=-=- A--==
199 p- -~ - i py— e ————e—
-4
® =108
f = = = = = A == === :: ----- :: ————— ::—-/_
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The Vela pulsar

AQ/Q=107% Qf = Qf =27 x 11.19 Hz
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The Vela pulsar

AQ/Q=107% Qf = Qf =27 x 11.19 Hz
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In Newtonian gravity

In the Newtonian limit (uX ~ mx, B= N =1, w = 0), we get:

Jx =/ px (1 —sx)er2sin29 d3V+/ pxex (Qy —QX)rQSinZH aBv
T by

t

Defining the moment of inertia [x and the mean entrainment parameter

£x as
Ix = [5, pxr?sin® 0’V Ixéx = [y, pxr?sin®ex &V
Ix = 1Ix (1 —éx)Qx + IxéxQy J
0Jx . see, e.g., Sidery, Passamonti &
by = 0y = Ixéx Andersson, MNRAS, 2010.
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In General Relativity

Let's go back to
Ix =[x nxpX % (Qx —w) r?sin? d*V

+ nx XEXE Qy*QX r25in29 d3V
5, TXHTEX
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In General Relativity

Let's go back to

Jxl’/ ix(Qxfw) d3V+/ ix€x(nyQx) d3V
pa pan

where ix = nxpuX Er?sin® 0 (— in Newt. grav., ix = pxr?sin’0).
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In General Relativity

Let's go back to

Jxl’/ ix(Qxfw) d3V+/ ix€x(nyQx) d3V
pa pan
where ix = nxpuX Er?sin® 0 (— in Newt. grav., ix = pxr?sin’0).

The "moment of inertia” Ix and the mean entrainment parameter £x are
now given by

Ix = [z, ixd®V Ixéx =[5 ixex &V
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In General Relativity

Let's go back to

Jxl’/ ix(Qxfw) d3V+/ ix€x(nyQx) d3V
pa pan

where ix = nxpuX Er?sin® 0 (— in Newt. grav., ix = pxr?sin’0).

The "moment of inertia” Ix and the mean entrainment parameter £x are
now given by

Ix = [z, ixd®V Ixéx =[5 ixex &V

The additional term associated with frame-dragging effect can be
expressed as

f):, ix w dBv = Ix (SI)'(-’;XQX + €LY7;XQY)
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In General Relativity

Let's go back to
Ix L’/ ix (QX 7(,0) d3V+/ ixex (Qy*Qx) d3V
pa pan

where ix = nxpuX Er?sin® 0 (— in Newt. grav., ix = pxr?sin’0).

The "moment of inertia” Ix and the mean entrainment parameter £x are
now given by

Ix = [z, ixd®V Ixéx =[5 ixex &V

The additional term associated with frame-dragging effect can be
expressed as

f):, ix w dBv = Ix (SI)'(-’;XQX + €LY7;XQY)

dx = b (1= =T x = £x) Qx + e (Ex — #47x) Qv J
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Frame-dragging contribution

= LT

--» additional coupling arising from frame-dragging effects.

0.14
kG TT (1-ekhy(1-e5T) / (R3?) —e-
. . 121 n'p nn PP’
Already pointed out by B. Carter in 0 TeT x
. . . . n=pn
1975. By dimensional considerations: 0.10f Tk DDH
0.08 ]
LT  _ gy LT .
IhetT = LelT 0.06
0.04
~ 3.2
~ kGl I,/(R3c?)
0.02
LT LT
x (L—eft)(1—efl) 000

Carter, Annals of Physics, 1975
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Distinct glitching behaviors

Wang et al., Ap&SS, 2012
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Distinct glitching behaviors

AQ/Q

Wang et al., Ap&SS, 2012
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Distinct glitching behaviors

Wang et al., Ap&SS, 2012
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Distinct glitching behaviors

Wang et al., Ap&SS, 2012

A . . . . . .
o —TheCrabpuisar & LY RPN quasi-periodic giant glitches with
A . .
ey 4 —The Vela pulsar i a very narrow spread in size
\—

AQ/Q

glitches of various sizes at
random intervals of time

!
00— 1000
Time Since Last Glitch (days)

Different models of glitches Haskell & Melatos, UMPD, 2015

> Rearrangement of the moment of inertia --+ crustquakes,

> Angular momentum transfer between two fluids --» superfluidity.
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