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Aim of this talk

This talk will hopefully not be of the/my conventional form:

‘This is what I’ve done...

...and this is why you should all care’

Instead the aim is to look at some places where:

Micro input can improve macro models

Macro input can improve micro models

of neutron-star magnetic fields.

Apologies in advance for my (mis)understanding of the micro side...
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Micro→macro: the crust-core boundary (1)

Models of NS magnetic fields broadly fall into two categories:

Steady-state/evolution in elastic crust alone

Ions locked in place (crust assumed able to absorb any stress)

Only electrons move

B = 0 ‘type-I superconducting’ (!) inner boundary

Papers by Geppert, Pons, Vigano, Cumming, Gourgouliatos, ...

Steady-state in core and (fluid) crust

Entire star is effectively fluid

Can have a crust, but must be unstressed (equilibrium state is fluid)

Force balance at crust-core boundary can lead to sharp features

Papers by me, Ciolfi, Fujisawa, Eriguchi, ...

Crust-core boundary treatment important for both – will focus on latter case.

3 / 14



Aim Micro→macro Macro→micro Summary

Micro→macro: the crust-core boundary (2)

Typical global model of NS magnetic
field geometry is a twisted-torus:
toroidal field fills region of closed
poloidal field lines.

Vector sum of poloidal+toroidal → coiled equatorial field lines.
Field geometry is quite general and follows from:

∇ · B = 0

no exterior electric currents

axisymmetry.
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Micro→macro: the crust-core boundary (3)

normal core sc core, B ∼ H sc core, B ≪ H

(Lander 2013, 2014; Palapanidis, Stergioulas, Lander 2015)

at crust-core boundary, impose force balance

this implies magnetic-force balance if everything else smooth

crust is always normal, magnetic force ∝ B2

if core normal, force ∝ B2 and field smooth

if core superconducting, force ∝ HB where H ∼ 1015 G

So, in the latter case transition can be abrupt for B ≪ 1015 G.
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Micro→macro: the crust-core boundary (4)

Question: what happens to the global B with a better, microphysical,
treatment of the crust-core boundary?

conductivity in pasta phases

anchoring fluxtubes at the boundary

current sheets?

symmetry energy, localised instabilities etc (Coimbra group...)
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Macro→micro: how strong can the field be?

Many studies concern microphysics at B & 1017 G. Makes theoretical sense to
probe effects in extreme limits, but...

Question: how strong can B really be? What is a ‘realistic’ geometry?

Upper limits

hard upper limit: a mythical ‘mega-magnetar’.
P = Pmag ∼ B2 balances gravity =⇒ B ∼ 1018 G

for B & 1016 G, superconductivity* broken (Glampedakis+ 2011, Sinha&Sedrakian 2015)

for B & 1015 G, elastic crust* readily fails (Lander+ 2015,Lander 2016)

for B & 1016 G, field generation mechanisms at birth saturate

*possible key field stabilisation mechanism - see next
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Macro→micro: what geometry can the field have?

Ignore the genesis of B. What allows for a stable magnetic field?

Main villain: the Tayler instability

plasma kink instability in spherical star (Tayler,

Markey&Tayler, Wright, 1973)

pure-poloidal fields (e.g. those from the Lorene
code) unstable in blue shaded region

pure-toroidal fields unstable in red shaded region

vigorous insuppressible dynamical instability,
causes global field rearrangement

timescale ∼ 0.01 s at 1015 G (10−5 s at 1018 G!)

Above ∼ 1016 G, no stabilisation mechanisms work. Need a stable
hydromagnetic equilibrium. May well not exist! (Lander&Jones 2012, Mitchell+ 2015).

→ room for improvement in microscopic models...
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Summary

two places for fruitful micro-macro collaboration:

microphysics of crust-core boundary likely very important in global
eqm, especially for superconducting cores
more realistic macrophysical field geometries likely important for
microphysics (beyond normal matter, poloidal fields, etc)

plenty of other issues: fluxtubes at T ≪ Tc , fluxtubes at B ∼ H, NS
ocean/surface, ...

bigger goals: interpret magnetar QPOs, understand X-ray burst and flare
energy reservoir, model large glitches, ...
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This slide intentionally left blank.
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Appendix: equilibrium equations

No dynamo in mature NSs =⇒ field regeneration not possible.
Natural assumption: B is in a dynamical equilibrium. Will also assume:

core neutrons are superfluid (reasonable after a few hundred years)

the elastic crust is unstressed (not so reasonable) =⇒ crust is ‘fluid’

rigid rotation is a trivial extension: Φ 7→ Φgrav + Φrot

One Euler equation per fluid:

∇µ̃p +∇Φ− Fmag/ρp = 0,

∇µ̃n +∇Φ = 0.

Equation of state is a double polytrope:

µ̃p = µ̃p(ρp), µ̃n = µ̃n(ρn).

The two fluids only couple through gravity:

∇
2Φ = 4πG(ρp + ρn),

and we always need to satisfy ∇ · B = 0. The
magnetic force Fmag will change though...
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Appendix: magnetic force

Since the lattice of fluxtubes is microscopic and regular, we can take a
sensible macroscopic average

This yields the supercon magnetic force, physically a fluxtube tension (Easson

& Pethick 1977; Glampedakis, Andersson, Samuelsson 2011)

Normal
In normal MHD, Fmag is the
familiar Lorentz force:

Fmag =
1

4π
(∇× B)× B.

Some algebraic tricks lead to a
single PDE, which is fairly
convenient to solve.

Superconducting

For superconducting matter we have instead:

Fmag =
1

4π

(

(∇×Hc1)×B− ρp∇

(

B
∂Hc1

∂ρp

))

.

There are now two magnetic fields: a ‘global’
one B and a ‘local’ one Hc1.
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Appendix: equilibrium equation (normal protons)

Now assume star is axisymmetric → magnetic field may now be rewritten in
terms of a streamfunction u, so that ∇ · B = 0 is automatically satisfied:

B =
1

̟
∇u × eφ + Bφeφ.

The Grad-Shafranov equation (Grad & Rubin 1958, Shafranov 1958)

After some algebra we arrive at a single PDE for the magnetic field:

∂2u

∂̟2
+

∂2u

∂z2
−

1

̟

∂u

∂̟
= −4π̟2ρp

dM

du
− fN

dfN

du
,

M(u) is related to the magnetic force through Fmag = ρp∇M and fN(u) to the
toroidal component.

Note one peculiarity: u appears on both sides of the equation!
→ natural to solve with iterative methods

13 / 14



Aim Micro→macro Macro→micro Summary

Appendix: equilibrium equation (superconducting protons)

Even when protons form a type-II superconductor, can perform a similar
derivation as for Grad-Shafranov equation.

One key step fails from the normal-matter derivation; the magnetic-force
function M is no longer a function of u. In addition, factors of the
magnetic-field magnitude B appear. The result is:

GS-type equation for a superconductor (Lander 2013)

∂2u

∂̟2
+

∂2u

∂z2
−

1

̟

∂u

∂̟
=

∇Π · ∇u

Π
−̟2ρpΠ

dy

du
− Π2

f
df

du
,

where Π ≡ B/ρp ; y(u) ∼ M + B is related to the magnetic force and f (u) is
related to the toroidal component.
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