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Estimation of tr A~1

m Goal: estimate tr A= or trTA™! for large-dimension squared
matrix A

m Application: disconnected diagrams

m Approach: Monte-Carlo (Hutchinson, 1989)

m Cost: depends on Var(xfA~1x)

tr A=t = E[xTA~1x], with E[x;x]] = 0;
Monte-Carlo Trace
forn=1,2...
x < rand(N,1)
qi xtA=1x
Stop if Var(g)/n is small

Return mean of g
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Variance reduction techniques

m Noise vectors
If using Gaussian noise:

Var(xTA71x) = 2|A7 Y2
If using Zy = {—1,1,—i,i}:
Var(xTA™1x) = [|A~! ~diag(A ™)1 = [|A~ |7~ | diag(A~ )17

m Deflation
trA Tl =trA'P+tr AN - P),
_ ——

direct stocastic

with P being low-rank. We hope
Var(xTA=1(I — P)x) < Var(xTA=1x)
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Deflation

trAl =tr AP+ tr ATH(1 - P),
NV ~—,—.——

direct stocastic

with P being low-rank. We hope
Var(xTA=Y(I — P)x) < Var(xTA=1x)

Source of P:

m Few accurate singular vectors/eigenvectors (future work) from
A corresponding to the lowest modes; good variance
reductions, expensive to compute and store

m Spatially-blocked basis that represents a significant chunk of
the lowest modes, but most of them inaccurately (Multigrid
prolongators); computing tr A"1P can be expensive, cheap to
compute and store
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SVD deflation
Singular Value Decomposition
A= Z u,'a,-v;r, Av; = ujo;, o € RT, u;ruj- = v,.TVj = 0jj
i

m Let P =K | wjul, with the k smallest o;, then

direct stocastic
—— /—’%
trA 7l =trA"'P+tr AL Zu vior b tr Z u;o ,-

i=k+1
m P reduces the variance when using Gaussian noise:
VarxT A=Y (1—=P) = 2| A~} (1-P)||2 = 2 Z 072 < ZZJ =2|A7Y2
i=k+1

m P reduces the variance if using Z; noise and u;, v; are
independent random unitary vectors (Corollary 2.7, A.S.
Gambhir, A. Stathopoulos, K. Orginos, 2017)

VarxTA71(] — P)x < VarxTA~1x
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SVD deflation: example
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Multigrid prolongators

m Multigrid prolongators exploit that the lowest n modes of A
can be well represented on a spatially-blocked basis out of the
lowest k < n modes

m Similarly the singular vectors corresponding to the smallest
singular values can be well represented on a spatially-blocked
basis out of the lowest k < n modes
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Oblique projectors on prolongator

trA =t AP+ tr AT - P),
— N————

direct stocastic

mlf P= P;P;f for the prolongator P; of rank k, tr A"1P can be
computed either with k inversions or MC (future work)

m Alternative 1: P = AP,-(PI.TAP,-)*lPIT
trA71P =tr P,-(PITAP,-)_lPIT = tl’(P;rAP,-)_l

tr A~ P can be computed efficiently, but poor variance reduction

m Alternative 2: if AP;V,. ~ P;U.X., then
P = APV (UIPTAP V) tULVIPT ~ PU UL P!
This can work well if P;U., P;V, are approximated singular vectors
on A. Hint: the small singular values are well represented in P;,

but both left and right approximate singular vectors are needed
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Left and right singular vectors in prolongators

m The presence of v;, u; on P; is necessary (but not sufficient) to
correlate the smallest part of the singular value spectrum of
PIAP; with A

m If Ais v-Hermitian, then vA is Hermitian, and yAv; = v;);
m Singular Value Decomposition of a y-Hermitian matrix
uj

A= Z*yv,-u,- O’,‘VI-T, Av; = yvipioi, oi € R, pj = +1, v,-ij = 0jj
i

m span{v;, ui} = span{v;,yv;} forms a subspace that has
chirality-split basis; also after chirality-splitting v;, the basis
expands v; and u;

m Assuming that the near null space found at the first step of
creating the prolongators has good approximations of v;
corresponding to the smallest o;, chirality-splitting will put
also the u; on the prolongators
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PRIMME

m Solver for singular value problems and Hermitian
eigenproblems

Efficient for computing a few values and vectors
No dependencies but BLAS and LAPACK
Support for MPI and, soon, GPUs

BSD

Based on Davidson-type methods, which allows acceleration
of the convergence by using:

m Preconditioning
m Many initial guesses

https://github.com/primme/primme
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https://github.com/primme/primme

Comparative of projectors

Wilson 323 x 64, blocking 44 (A.S. Gambhir, A. Stathopoulos,
K. Orginos 2017):

Operator rank(P) Var(Op.) Compute P
A1 20e4
A~L(1— UuUT) 600 le4 6126s
A~ — APy (P} APy)~1P]) 184
A=Y — APy(PIAP,)~1P)) 19e4
AN — APV EZTULPTY 1000 (1st level) 4ed 683s
AN — APV SZPULPL) 1000 (2nd level)  4e4 67s
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Probing

m Ignore off-diagonal of A~!: spin-color dilution, probing

Partition of B = A~1 into k domains:

Bix Bia -+ Bix

Boi By -+ Boy
B=| . . ’

Bki Bikp -+ Bk

tr B = Ztr B;’,'

We hope
Var xBx > ZVarXTB,-,,-x

Problem: determine how many partitions are required to reduce
the variance enough
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Hierarchical Probing
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Hierarchical probing:
m Use Hadamard basis instead of structural basis

m The span of the first 2 HP vectors coincides with a 2%
partition of the matrix
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Results
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Results
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Summary

m We explore several projectors for deflation
m P = UUT, 20 times better than undeflated, expensive to
compute, high storage demand

m P=AP; VCZC_lUIP,.T, 5 times better than undeflated, cheap to
compute, low storage demand

m Hierarchical probing reduces further the variance
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