PDF uncertainties in theoretical predictions for far-forward tau neutrinos at the LHC

MH Reno for

Weidong Bai, Milind Diwan, Maria Vittoria Garzelli, Yu Seon Jeong, Fnu Karan Kumar, MHR

preprint in preparation & JHEP 06 (2020) 032 [2002.03012]

Work supported in part by the US DOE.

9 December 2021

$v_{\tau} + \bar{v}_{\tau}$

- D_s is the lowest mass charm hadron to decay into $\bar{\nu}_{\tau}\tau$
- Pion-like decay: prompt $D_s^- \rightarrow \bar{\nu}_{\tau} \tau \rightarrow \bar{\nu}_{\tau} \nu_{\tau} X$ Tau decay also prompt.
- Charm is dominant source of $v_{\tau} + \bar{v}_{\tau}$ - a factor of more than 10 larger than from b-quarks.

Forward production, $\eta_{\nu} > 6.9$

$$B(D_s \to \bar{\nu}_\tau \tau) = 5.48 \pm 0.23\%$$

9 December 2021

MH Reno, University of Iowa, Far Forward Physics

NLO pQCD evaluation of charm pair production.

- PROSA PDFs with scale
 & PDF uncertainties.
- Transverse momentum smearing.
- Other PDFs.

Charm pair production

- PROSA 2019 fit to heavy flavor production including LHCb. Zenaiev et al, JHEP 04 (2020) 118. Fits include LHCb and HERA charm production cross sections. 3 flavor PDFs.
- We use LHCb D_s data to (in part) anchor our FPF calculation.
- D_S rapidity correlated with v_{τ} rapidity.

Short white paper 2109.10905

- PDFs, small x and large x
- Intrinsic k_T/ k_T smearing (mimicking higher order effects?)
- Renormalization, factorization scale effects
- Intrinsic charm
- Fragmentation, spectator effects

spread of neutrino rapidity for restricted charm or meson rapidity/pseudorapidity

Neutrino rapidity correlates better with charm rapidity than with charm pseudorapidity in the forward region.

A. Di Crescenzo for SND@LHC, 3rd FPF Meeting

PROSA PDF fits done with $m_{T,2} \equiv \sqrt{(2m_c)^2 + p_T^2}$ also used here. Scale uncertainty band.

9 December 2021

Forward physics: small x and large x PDFs

xg(x,Q)

Forward physics: small x and large x PDFs

charm quark energy distribution

9 December 2021

9 December 2021

Results FASER ν

Events per GeV per ton

Results SND@LHC

9 December 2021

MH Reno, University of Iowa, Far Forward Phys

FPF $\eta > 6.9$

Events per GeV per ton

 $v_{ au} + ar{v}_{ au}$ Events Run 3

$\mathcal{L} = 150 \text{ fb}^{-1}$	ν_{τ}	$\bar{\nu}_{ au}$	$\nu_{\tau} + \bar{\nu}_{\tau}$	$\nu_{ au} + ar{ u}_{ au}$				
$(\mu_R,\ \mu_F),\ \langle k_T angle$	$(1, 1) m_{T,2}, 0.7 \text{ GeV}$							
				scale(u/l)	PDF(u/l)	$\sigma_{ m int}$		
SND@LHC	2.8	1.3	$4.2^{+3.8}_{-3.3}$	+3.7/-3.1	+0.8/-1.2	± 0.1		
$7.2 < \eta_{\nu} < 8.6, 830 \text{ kg}$								
$FASER\nu$	8.2	3.9	$12.1^{+11.6}_{-9.8}$	+11.3/-9.0	+2.8/-3.9	± 0.3		
$\eta_{\nu} > 8.9, 1.2 \text{ ton}$								
$(\mu_R, \ \mu_F), \langle k_T \rangle$	$(1, 2) m_T, 1.2 \text{ GeV}$			$(1, 1) m_{T,2}, 0.7 \text{ GeV}$				
PDF	PROSA FFNS			NNPDF3.1	CT14	ABMP16		
SND@LHC	5.1	2.4	7.5	4.0	6.6	5.0		
$7.2 < \eta_{\nu} < 8.6, 830 \text{ kg}$								
$FASER\nu$	13.5	6.4	19.9	12.8	23.5	15.6		
$\eta_{\nu} > 8.9, 1.2 \text{ ton}$								

9 December 2021

 $u_{ au} + ar{
u}_{ au}$ Events HL

$\mathcal{L} = 3000 \text{ fb}^{-1}, 1 \text{ m}$	ν_{τ} $\bar{\nu}_{\tau}$ $\nu_{\tau} + \bar{\nu}_{\tau}$ $\nu_{\tau} + \bar{\nu}_{\tau}$							
$(\mu_R, \ \mu_F), \ \langle k_T angle$	$(1, 1) m_{T,2}, 0.7 \text{ GeV}$							
				scale (u/l)	PDF (u/l)	$\sigma_{ m int}$		
$\eta \gtrsim 6.9$	3260	1515	4775^{+4307}_{-3763}	+4205/-3494	+926/-1391	± 112		
$(\mu_R, \ \mu_F), \langle k_T \rangle$	$(1, 2) m_T, 1.2 \text{ GeV}$			$(1, 1) m_{T,2}, 0.7 \text{ GeV}$				
PDF	P	PROSA	FFNS	NNPDF3.1	CT14	ABMP16		
$\eta \gtrsim 6.9$	5877	2739	8616	4545	7304	5735		

1 m tungsten, namely 60.63 ton

9 December 2021