Discussion of ν_{τ} **recognition at** ~1 **TeV**

Wenjie Wu, Jianming Bian

University of California, Irvine

October 14, 2021

Introduction

- As a start, we now only consider the signatures of τ^- from ν_{τ} CC
 - simulations
- Liquid argon
 - LAr radiation length is 14 cm
 - LAr density is 1.4 g/cm³
- Use Geant4 to simulation tau- in a LAr detector
 - Detector Size (cuboid): 1x1x7
 - Direction: (0, 0, 1). Currently no angle smearing.
 - Vertex of electron is uniformly distributed along Z-axis (0, 7000) mm
 - PhysicsList used in the simulation: FTFP_BERT

- The hadronic shower of the final state is also helpful for ν_{τ} recognition, but need more comprehensive

241 GeV e-

241 GeV e-

Wenjie Wu (UCI)

1 TeV tau-

1 TeV tau-

Excluding gamma $\tau^- \rightarrow e^- (241 \text{ GeV}) \bar{\nu}_e \nu_\tau$

short decay length of tau-

450 GeV mu-

Excluding gamma

Wenjie Wu (UCI)

$\tau^- \rightarrow \mu^- (450 \text{ GeV}) \bar{\nu}_{\mu} \nu_{\tau}$

Wenjie Wu (UCI)

short decay length of tau-

Travel distance of tau- before decay

Wenjie Wu (UCI)

Kinetic energy of the final state lepton from tau- decay

Energy Containment

Energy Containment

Next steps

- Consider liquid krypton as an alternative option
- Liquid krypton
 - LKr radiation length is 4.7 cm
 - LKr density is 2.41 g/cm³

Backup

Detector Construction in Geant4

- A simple cuboid detector made up of LAr
 - Size: 1.5x1.5x7 and 1x1x7


```
Wenjie Wu (UCI)
```


- Electron energy in the simulation: 200 MeV, 500 MeV, 1 GeV, 5 GeV, 10 GeV, 50 GeV, 100 GeV, 200 GeV, 300 GeV

Energy deposition

- Size configuration: 1.5x1.5x7 m
 - Left: The fraction of energy deposited inside the LAr region V.S. electron vertex Z
 - Right: Maximum vertex Z that can contain 90% (95%) of the energy V.S. true electron energy

Wenjie Wu (UCI)

Energy deposition

- Similar plot for the size configuration: 1x1x7 m
 - Left: The fraction of energy deposited inside the LAr region V.S. electron vertex Z
 - Right: Maximum vertex Z that can contain 90% (95%) of the energy V.S. true electron energy

Wenjie Wu (UCI)

90% and 95% energy containment

- Comparison of two size configurations
 - Two configurations have almost the same acceptance for EM shower up to 300 GeV
 - 300 GeV EM Shower with 95% E containment: z < 4.4 m, 90% E containment: z < 4.8 m

