

Carbon Nanotube Multi-spectra Sensor Development

A.Kyriakis^a, N.Glezos^b, D.Velessiotis^b and A. Stefanou^c

^aINPP, NCSR 'Demokritos', ^bINN, NCSR 'Demokritos', ^cNTUA

The sensor was designed and developed 100% from the institutes of INPP and INN of NCSR "DEMOKRITOS"

Now funded by HFRI and GSRT program No 157446/12/21-9-2018, 200k€

Aristotelis Kyriakis

ISAC, INPP, 21/11/2019

Solar Spectrum

Introduction-Main Idea

- Many types of Ultra Violet (UV) detectors are used up to now.
- UV spectrum is of particular interest not only in particle physics where Cherenkov light and scintillators emit in this region but also in other fields like agriculture, food industry or medicine.
- The main idea of this proposal is to build low cost and low operating voltage UV, sensors based on arrays of well-aligned Carbon Nano Tubes (CNT) in the form of Multi Wall CNT (MWNT)

CNT Development Facility

➤A mixture of 2g of Camphor with 0.1g of Ferrocene as a catalyst.

> Preheating phase at T = 200 $^{\circ}$ C and main high temperature oven at T = 850 $^{\circ}$ C.

≻The whole process lasts about 40min.

≻Achieved to control the length in the CNT array below 40µm.

Sensor Fabrication

> n-type Si (450µm width) of 100 orientation and $\rho = 10\Omega$.cm.

> The back plain of the Si is covered with a thin layer ($30\mu m$) of gold (Au) to serve as Ohmic contact.

> 140µm Si₃N₄ layer is deposited on the top plain to serve as a diffusion barrier (i.e. Fe from Ferrocene during CNT development) as well as a dark current reducer.

The CNTs were deposited using CVD process at 850 °C

Sensor Performance (I)

CI С

400

600

λ (nm)

80

60

20

200

EQE (%)

Effective Quantum Efficiency (EQE) of the fabricated sensor for 9V bias voltage. ➢Good performance in UV (200nm – 400nm). ➢Peak EQE in IR (750nm).

The UV response of the device is attributed to: The presence of the nitride layer which has a bandgap of ~5.2eV (238nm). CNT act as a UV photon absorber.

same level of the best performing **Schottky or MSM** type GaN, UV

800

1000

 $R(\lambda) = I_{PD} / P_{opt}$, I_{PD} : generated photocurrent, P_{opt} : incident light power at a given wavelength (λ)

ISAC, INPP, 21/11/2019

power (µW)

Sensor Performance (II)

Thermally treatment in the stage of CNT deposition causes Fe catalyst atoms contamination of the Si_3N_4 layer and the conductance behavior completely changes. The fabricated detector behaves as a Schottky diode (red solid line) that depends upon the MWCNT/n-Si barrier.

The Si₃N₄ layer, due to the addition of the Fe traps, becomes a series resistance (~10-30k Ω) manifesting itself as a bending of the forward characteristic (bias >0.5V).

Sensor Performance (III)

UV response of the device vs Bias Voltage Sensor Specific Detectivity(defines the resolving power):

$$D^* = R \ \frac{\sqrt{A \ \Delta f}}{I_n}$$

For A = 0.04cm², Δf = 17782Hz, I_n= 0.08μ A, R = 140mA/W for V=8Volts \rightarrow D* = 4.7×10^7 cm Hz^{1/2}/W Current Noise level (I_n) at Bias Voltage = 8V, $I_n \approx 0.08 \mu A$

> Trapping role of the Fe atoms demonstrated in admittance over omega (G/ ω) vs frequency (f) plot in the case of the "blank" and the "CNT removed" references.

The Fe traps contribute by a time constant of 56µsec affecting the performance of the device. \rightarrow *flicker noise*, or 1/*f*

21st International Workshop on Radiation Imaging Detectors July 7 - 12, 2019 **Orthodox Academy of Crete, Chania, Crete, Greece**

A UV photodetector based on ordered free standing MWCNT

A.Kyriakis^a, N.Glezos^b, D.Velessiotis^b and A. Stefanou^c

a Institute of Nuclear and Particle Physics, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece, b Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece, National Technical University of Athens, Iroon Polytexneiou 9, 157 80 Athens, Greece E-mail: kyriakis@inp.demokritos.gr

Summary: Multiple Wall Carbon Nanotubes (MWCNT) present advantages for optoelectronic applications such as the large effective photo-collector surface as well as the possibility to tune their band gap and absorbance through the growth parameters[1]. In this work, we demonstrate a hybrid MWCNT/Si₃N₄/n-Si photodetector based on ordered MWCNTs and evaluate its performance in the UV, visual and near IR spectrum (200-1000nm). Depending on the application the absorbing nanotube layer can be made thick enough (e.g. several millimetres) to enhance radiation absorption and electron-hole pair generation. The best result obtained so far as a UV detector is a 90% Equivalent Quantum Efficiency @275nm for a 20μm CNT layer thickness[2].

Device Fabrication

The device structure is presented in figure 1. Fabrication starts with a n-type (100) Si wafer (450µm thickness) of $\rho = 10 \ \Omega^*$ cm. The back plain of the Si is covered with a thin (100nm) of gold (Au) electrode, while a 150 μ m Si₃N₄ layer is deposited via Chemical Vapor Deposition (CVD) to serve as an anti-reflecting coating as well as a dark current reducer. This is followed by the development of the Carbon Nanotubes (CNT) layer via Catalytic CVD and the thermal evaporation of an aluminum (Al) thin (100nm) electrode.

Figure 1: Device Structure

The reactor used for the CNT development is displayed in figure 2. A mixture of 2g of Camphore with 0.1g of Ferrocene as a catalyst was injected into the deposition chamber with the use of N₂ gas flow (0.6l/min), after preheating at 200°C. The mixture gas travels through the main high temperature oven, which is kept at θ = 850°C and MWCNTs are formed on the "cold" substrate. The whole process lasts about 40min and produces well-ordered MWCNTs (Figure 3).

Operation

When used as a photodetector, the device is biased in the inverse direction (n-Si substrate positive) and behaves as a Schottky diode with an intermediate dielectric barrier layer. Figure 4 shows the band scheme of the device. The Si_3N_4 layer acts as a wave guide for UV photons and as a diffusion barrier for the Fe ions introduced during MWCNT fabrication (Figure 5)

Performance

The device has excellent performance in the UV and the visual part of the spectrum. Responsivity and EQE exceed 100mA/W and 50% for a selected operation bias. The UV response is shown in figure 6.

Figure 6: Responsivity and EQE for a 275nm source vs device bias [2]

100

f(Hz)

10

References

 C. Aramo et al., "Progress in the realization of a silicon-CNT photodetector," Nucl. Inst. [2] A. Filatzikioti et al., "Carbon nanotube Schottky type photodetectors for UV applications," Solid. State. Electron., vol. 151, pp. 27-35, 2019.

-IFRI

This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No 157446/12/21-9-2018.

characteristic

time of 56µsec.

Carbon Nanotube Schottky type UV Sensor

Solid State Electronics 151 (2019) 27-35

Carbon nanotube Schottky type photodetectors for UV applications

* National Technical University of Athens, Iroon Polytexneiou 9, 157 80 Athens, Greece

^b Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece

^c Institute of Nuclear and Particle Physics, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece

https://doi.org/10.1016/j.sse.2018.10.018

Check for updates

Future Plans

- Try to tune the various parameters of the sensor i.e. CNT height, and $\rm Si_3N_4$ layer width.
- Try to reduce the size of the sensor to ~0.5mm in diameter and construct an array of such sensors. First results are promising.

• Try to combine CNT development procedure with lithographic techniques to produce a SiPM type device in possible collaboration with KETEK GmbH.

Conclusions for CNT Sensors

•We developed CNT sensors with high added value (fully constructed in NCSR) that can operate:

- In a wide range of the UV spectrum(200nm 400nm)
- Have large Responsivity ~200mA/W for UVC band
- > Reasonable Detectivity ~ 4.7×10^7 cm Hz^{1/2}/W
- > They can operate in low voltage < 10V.
- > The development process and production is cheap.
- They are promising UV radiation sensors