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3 Biggest Physics Discoveries Of The Decade
https://www.forbes.com

Higgs GW BH Horizon



From	elementary	par-cles	to	Black	Holes

Large Millimeter Telescope "Alfonso Serrano" (LMT)ATLAS detector

LHC LIGO EHT
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Higgs%boson%production%

!  √s=8%TeV:%25V30%%higher%σ%than%√s=7%TeV%at%low%m
H%

!  All%production%modes%to%be%exploited%

!  gg%VBF%%VH%ttH%
!  Latter%3%have%smaller%cross%sections%but%better%S/B%in%many%cases%%
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Faint signals; Patience; Theory

Theore-cal	Physics	
QFT GR

BH Physics 
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Status: February 2022

ATLAS Preliminary
p
s = 5,7,8,13 TeV

Theory

LHC pp
p
s = 13 TeV

Data 3.2 � 139 fb�1

LHC pp
p
s = 8 TeV

Data 20.2 � 20.3 fb�1

LHC pp
p
s = 7 TeV

Data 4.5 � 4.9 fb�1

LHC pp
p
s = 5 TeV

Data 0.03 � 0.3 fb�1

Standard Model Production Cross Section Measurements
R
L dt

[fb
�1
]

Reference

– H ! ��– H!bb̄

VH

– WV!`⌫J
WV!`⌫jj

– ZZ
⇤!4`

– ZZ!``⌫⌫

– 4` inclusive (60 GeV <m4`< 200 GeV)

ZZ

– WZ!`⌫``

WZ

– WW!eµ, [njet � 1]
– WW!eµ, [njet = 1]
– WW!eµ, [njet � 0]

– WW!eµ, [njet = 0]

WW

– Z�!⌫⌫�

– [njet = 0]

Z�!``�
– [njet = 0]

W�!`⌫�
��

� = 6+ 1.3 � 1.4 + 0.4 � 0.5 fb (data)
Powheg Box NLO(QCD) (theory) 139 ATLAS-CONF-2021-053

� = 1190 ± 130 + 160 � 140 fb (data)
Powheg Box NLO(QCD) (theory) 139 ATLAS-CONF-2020-027

� = 1.03 + 0.37 � 0.36 + 0.26 � 0.21 pb (data)
NNLO(QCD)+NLO(EW) (theory) 20.3 JHEP 12 (2017) 024

� = 2719 + 947 � 810 fb (data)
NNLO(QCD)+NLO(EW) (theory) 36.1 JHEP 12 (2017) 024

� = 30 ± 11 ± 22 fb (data)
MC@NLO (theory) 20.2 EPJC 77 (2017) 563

� = 1.37 ± 0.14 ± 0.37 pb (data)
MC@NLO (theory) 4.6 JHEP 01, 049 (2015)

� = 209 ± 28 ± 45 fb (data)
MC@NLO (theory) 20.2 EPJC 77 (2017) 563

� = 29.8 + 3.8 � 3.5 + 2.1 � 1.9 fb (data)
PowhegBox & gg2ZZ (theory) 4.6 JHEP 03, 128 (2013)

� = 73 ± 4 ± 5 fb (data)
PowhegBox norm. to NNLO & gg2ZZ (theory) 20.3 PLB 753, 552-572 (2016)

� = 88.9 ± 1.1 ± 2.74 fb (data)
Sherpa (NLO) (theory) 139 JHEP 07 (2021) 005

� = 12.7 + 3.1 � 2.9 ± 1.8 fb (data)
PowhegBox & gg2ZZ (theory) 4.6 JHEP 03, 128 (2013)

� = 9.7 + 1.5 � 1.4 + 1 � 0.8 fb (data)
PowhegBox & gg2ZZ (theory) 20.3 JHEP 10 (2019) 127

� = 25.4 ± 1.4 ± 1 fb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 JHEP 10 (2019) 127

� = 25.4 + 3.3 � 3 + 1.6 � 1.4 fb (data)
PowhegBox & gg2ZZ (theory) 4.6 JHEP 03, 128 (2013)

� = 49.3 ± 0.8 ± 1.1 fb (data)
Sherpa (NLO) (theory) 139 JHEP 07 (2021) 005

� = 6.7 ± 0.7 + 0.5 � 0.4 pb (data)
NNLO (theory) 4.6 JHEP 03, 128 (2013)

PLB 735 (2014) 311

� = 7.3 ± 0.4 + 0.4 � 0.3 pb (data)
NNLO (theory) 20.3 JHEP 01, 099 (2017)

� = 17.3 ± 0.6 ± 0.8 pb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 PRD 97 (2018) 032005

� = 140.4 ± 3.8 ± 4.6 fb (data)
MCFM NLO (theory) 20.3 PRD 93, 092004 (2016)

� = 255 ± 1 ± 11 fb (data)
MATRIX (NNLO) (theory) 36.1 EPJC 79 (2019) 535

� = 19 + 1.4 � 1.3 ± 1 pb (data)
MATRIX (NNLO) (theory) 4.6 EPJC 72 (2012) 2173

� = 24.3 ± 0.6 ± 0.9 pb (data)
MATRIX (NNLO) (theory) 20.3 PRD 93, 092004 (2016)

� = 51 ± 0.8 ± 2.3 pb (data)
MATRIX (NNLO) (theory) 36.1 EPJC 79 (2019) 535

� = 258 ± 4 ± 25 fb (data)
NLO (theory) 139 ATL-COM-PHYS-2020-574

� = 136 ± 6 ± 14.3 fb (data)
NLO (theory) 20.3 PLB 763, 114 (2016)

� = 563 ± 28 + 79 � 85 fb (data)
MCFM (theory) 4.6 PRD 91, 052005 (2015)

� = 262.3 ± 12.3 ± 23.1 fb (data)
MCFM (theory) 4.6 PRD 87, 112001 (2013)

� = 374 ± 7 + 26 � 24 fb (data)
approx. NNLO (theory) 20.3 JHEP 09 (2016) 029

� = 379.1 ± 5 ± 27 fb (data)
NNLO + NLO EW (theory) 36.1 EPJC 79 (2019) 884

� = 51.9 ± 2 ± 4.4 pb (data)
NNLO (theory) 4.6 Phys. Rev. D 87 (2013) 112001

arXiv:1408.5243

� = 68.2 ± 1.2 ± 4.6 pb (data)
NNLO (theory) 20.3 PLB 763, 114 (2016)

� = 130.04 ± 1.7 ± 10.6 pb (data)
NNLO (theory) 36.1 EPJC 79 (2019) 884

� = 0.133 ± 0.013 ± 0.021 pb (data)
MCFM NLO (theory) 4.6 PRD 87, 112003 (2013)

� = 68 ± 4 + 33 � 32 fb (data)
NNLO (theory) 20.3 PRD 93, 112002 (2016)

� = 83.7 + 3.6 � 3.5 + 7.1 � 6.5 fb (data)
MCFM (NNLO) (theory) 36.1 JHEP 12 (2018) 010

� = 1.05 ± 0.02 ± 0.11 pb (data)
NNLO (theory) 4.6 PRD 87, 112003 (2013)

� = 1.189 ± 0.009 + 0.073 � 0.067 pb (data)
NNLO (theory) 20.3 PRD 93, 112002 (2016)

� = 1.31 ± 0.02 ± 0.12 pb (data)
NNLO (theory) 4.6 PRD 87, 112003 (2013)

arXiv:1407.1618

� = 1.507 ± 0.01 + 0.083 � 0.078 pb (data)
NNLO (theory) 20.3 PRD 93, 112002 (2016)

arXiv:1407.1618

� = 533.7 ± 2.1 ± 15.4 fb (data)
Matrix NNLO QCD + NLO EW (theory) 36.1 JHEP 03 (2020) 054

� = 1.76 ± 0.03 ± 0.22 pb (data)
NNLO (theory) 4.6 PRD 87, 112003 (2013)

� = 2.77 ± 0.03 ± 0.36 pb (data)
NNLO (theory) 4.6 PRD 87, 112003 (2013)

arXiv:1407.1618

� = 44 + 3.2 � 4.2 pb (data)
2�NNLO (theory) 4.9 JHEP 01, 086 (2013)

� = 16.82 ± 0.07 + 0.75 � 0.78 pb (data)
2�NNLO + CT10 (theory) 20.2 PRD 95 (2017) 112005

� = 31.4 ± 0.1 ± 2.4 pb (data)
NNLOjet (NNLO) (theory) 139 JHEP 11 (2021) 169
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Status: February 2022
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Diboson Cross Section Measurements

Precision physics requires precise theoretical predictions
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HELAC-NLO & Associated Tools

Projects

HELAC-PHEGAS  - A generator for all parton level processes in the Standard Model

HELAC-DIPOLES  - Dipole formalism for the arbitrary helicity eigenstates of the external partons

HELAC-1LOOP - A program for numerical evaluation of  QCD virtual corrections to scattering amplitudes

ONELOOP  - A program for the evaluation of one-loop scalar functions

CUTTOOLS - A program implementing the OPP reduction method to compute one-loop amplitudes

PARNI  - A program for importance sampling and density estimation

KALEU  - A general-purpose parton-level phase space generator

HELAC-ONIA  - An automatic matrix element generator for heavy quarkonium physics
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C.G.Papadopoulos (INPP) High-energy phenomenology group Athens 2015 13 / 22

Comput.Phys.Commun. 184 (2013) 986-997

https://doi.org/10.1016/j.cpc.2012.10.033


NI = di1i2i3i4 + !di1i2i3i4( )Di1
Di2
Di3
Di4∑ + ci1i2i3 + !ci1i2i3( )Di1

Di2
Di3∑ +…

Nucl.Phys.B 763 (2007) 147-169

One-loop Amplitudes 

OPP 

HELAC1L

https://doi.org/10.1016/j.nuclphysb.2006.11.012
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NNLO precision

σ NNLO → d
m∫ Φm 2Re(Mm

(0)*Mm
(2) )+ Mm

(1) 2( )Jm (Φ)

+ d
m+1∫ Φm+1 2Re Mm+1

(0)*Mm+1
(1)( )( )Jm+1(Φ)

+ d
m+2∫ Φm+2 Mm+2

(0) 2
Jm+2 (Φ)

VV

RV

RR

Tree-order, one- and two-loop amplitudes

Renormalisation, Factorisation
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74,3 75,3 86,3

JHEP	01	(2021),	199

Two-loop integrals: planar case Feynman	:	September	15,	1949

https://doi.org/10.1007/JHEP01(2021)199


High	Energy	Physics	Phenomenology		
and	Computa-onal	Physics	

xp1

xp2

−p1234

p123 − xp12

p4

q1→ p123 − xp12, q2 → p4 , q3 →− p1234 , q4 → xp1

d!g = ε d log Wa( ) !Ma
"g

a
∑ d!g

dx
= ε 1

x − ℓb
Mb
"g

b
∑

g = ε0b0
(0) + ε( Ga∑ Mab0

(0) + b0
(1))

+ε2( Gab∑ MaMbb0
(0) + Ga∑ Mab0

(1) + b0
(2)) 

+ε3( Gabc∑ MaMbMcb0
(0) + Gab∑ MaMbb0

(1) + Ga∑ Mab0
(2) + b0

(3)) 

+ε4( Gabcd∑ MaMbMcMdb0
(0) + Gabc∑ MaMbMcb0

(1)

+ Gab∑ MaMbb0
(2) + Ga∑ Mab0

(3) + b0
(4))+ ... 

Gab… := G(ℓa ,ℓb ,…;x) 

JHEP	07	(2014),	088

Simplified Differential Equations 

https://doi.org/10.1007/JHEP07(2014)088
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86,3 86,3 135,3

179,9 142,9

JHEP	06	(2021),	037

one-loop pentagon and three-loop planar JHEP	02	(2021),	080

JHEP 05 (2022) 033Two-loop integrals: non-planar case

https://doi.org/10.1007/JHEP06(2021)037
https://doi.org/10.1007/JHEP02(2021)080
https://doi.org/10.1007/JHEP05(2022)033
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Developing HELAC2L
J.Phys.Conf.Ser.	2105	(2021)	5,	012010

https://doi.org/10.1088/1742-6596/2105/1/012010
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Developing HELAC2L

Snowmass 2021 white paper

https://arxiv.org/abs/2204.04200


THEORETICAL
	HIGH	ENERGY	PHYSICS	GROUP

 
Our	Research	target	is	:		Study	of	classical	and	quantum	properQes	of	space-Qme	horizons	(BHs,	AdS)	

Our	Research	demonstrates	:	Quantum	BHs	are	“Cross-FerQlizers”	of	InformaQon	theory,	Geometry	,	

ChaoQc	Dynamics	and	Number	theory	

https://arxiv.org/abs/2204.04200


THEORETICAL
	HIGH	ENERGY	PHYSICS	GROUP

 

Holographic  Bekenstein-Hawking  finite quantum entropy

SBH = c3A
4G!

=
n.u .

A
4

IT	FROM	QUBIT		

Black	Hole		Horizons	possess:		Finite	#		of	microscopic	d.o.f		with		a	Finite		dimensional	Hilbert	Space	of	States	

https://arxiv.org/abs/2204.04200


THEORETICAL
	HIGH	ENERGY	PHYSICS	GROUP

Black	Hole		Near	Horizon		Geometry	:	A	stretched	space--me	at	Planck	length	distance	( 	cm)		
from	the	Event	Horizon	

10−33

• BH-horizon	is	a	classically	radiaQng	surface	(membrane)	electrically	charged	with	conducQng	

properQes,	finite	entropy	and	temperature.			

• Our	Work		incorporates	higher	dimensional	Berenstein-Maldacena-Nastase(BMN)-Matrix	

Model	effects	demonstraQng	Non-locality	and	Chaos	



THEORETICAL
	HIGH	ENERGY	PHYSICS	GROUP

NECESSARY:		Theore-cal	Ingredients	for		modelling		Unitary	Quantum	Informa-on	Processing	by	BH		
(Sekino-Susskind,	Heyden-Preskill,Shenker-Stanford,Maldacena		et.al..)	

1. Non	locality	(Beyond	Field	theories)	
2. Strong	Chao-c	and	random	dynamics			
3. Superfast		scrambling	of	incoming	Informa-on					
4. Entanglement	between		the		outgoing	and		incoming		par-cles	must		carry	away	the	“lost	informa-on”	saving	

unitarity.

We	work	within	the	framework	of	the	Holographic	Principle		(‘t	hooh-Susskind)	+AdS/CFT(Maldacena)	:	
INFORMATION		OF	A	VOLUME	IS		ENCODED	ON		ITS		SURFACE	BOUNDARY	



Project	1.	“Quantum	Entanglement		in	Many	Body	Quantum	Systems	and	Black	Holes”.	
h]p://happen.inp.demokritos.gr	(holographic	applicaQons	of	quantum	entanglement)	

16	Publica-ons	in		Int.Journals	&	5	Conference	Proceedings	

	
• Entanglement	 Entropy	 &	 Mutual	 InformaQon	 in	 Many	 Body	 Systems,	 Scalar	 Fields	 (Srednicki’s	 Area	

Law),	Entanglement	Thermodynamics.	
• Minimal	Surfaces		and	the	Ryu-Takayanagi	Conjecture	in	AdS/CFT.	
• Development	of	Methodology	(Dressing	Method,	Polmeyer	ReducQon	in	NLSMs)		for	obtaining	classical	

string	soluQons		in	specific		Geometries.			
• AdS/dCFT	(G.	Linardopoulos):	4	publicaQons	+	1	conference	proceedings.	
➡				2019	Academy	of	Athens:	“Lykourgeion	Prize	in	TheoreQcal	Physics”		

Future	Plans:	(M.Axenides	with	M.	Floratos,	S.	Nicolis	and	G.	Linardopoulos)		

• Further	develop	exact	methods	in	the	computaQon	of		Entanglement	Entropy	and	Mutual	InformaQon	
in	Quantum	Many	body	Systems	as	well	as	their	Entanglement	Thermodynamics.	

							Study	of	all	aspects	of	Quantum	Entanglement		in	:		
1. Many	body	ChaoQc	Quantum	Systems		with	Non	Local		InteracQons		(e.g.	Arnold	Cat	Map	Lances)		and		
2. Quantum	ChaoQc	Lance		Field	Theory	in	general.

Eur.Phys.J.C 78 (2018) 4, 282 JHEP 02 (2020) 091 Phys.Rev.D 101 (2020) 8, 086015 JHEP 09 (2019) 106

Eur.Phys.J.C 78 (2018) 8, 668 JHEP 05 (2021) 203 Phys.Lett.B 781 (2018) 238-243 JHEP 11 (2020) 128

http://happen.inp.demokritos.gr/


Project	2.	“Chaos		in	the	classical	limit	(Membrane)	of	the	(Berenstein-Maldacena-Nastase)	Matrix	
Model	in	11-d	M-theory ”.	
Researchers		:				M.Axenides,		G.Linardopoulos,	E.G.	Floratos	and	D.Katsinis(Ph.D)	

3	Publica-ons	in		Int.Journals	&	1	Conference	Proceedings	

• Strong	ChaoQc	InstabiliQes	are	observed	in	a	detailed	higher	order	angular	perturbaQve	analysis	
of	a	classical	SO(3)	closed	membrane	with	flux		obeying	a	cascade	papern:		
• dipole	j=0,	and	quadruple	j=1	perturbaQons	are	unstable	to	lowest	order	in	the	perturbaQve	

stability	analysis	with	all	the	rest	stable. 
• They	induce	a	cascade		of	instabiliQes	for	all	j	mulQpole	2nd	order		perturbaQons.(Smoking	gun	

for	weak	turbulence	?) 	
• Future	 Plans:	 IDENTIFY	 POSSIBLE	 KOLMOGOROV	 TYPE	 ENERGY	 SCALING	 IN	 MEMBRANE	

INSTABILITY		CASCADES	

Phys.Rev.D 104 (2021) 10, 106002

Phys.Rev.D 97 (2018) 12, 126019

Phys.Lett.B 773 (2017) 265-270

https://doi.org/10.1103/PhysRevD.104.106002
https://doi.org/10.1103/PhysRevD.97.126019
https://doi.org/10.1016/j.physletb.2017.08.036


Project	3.	“Finite	(ArithmeQc)		Quantum		Mechanics  ”.		
1. Planck	Scale	Space-Time	Modelling 

2. ArithmeQc	Quantum	ComputaQon 	
Researchers		:				M.Axenides,		G.Linardopoulos,	E.G.	Floratos	and	A.Pavlidis	

4	Publica-ons	in		Int.Journals	&	2	Conference	Proceedings	
An		Arithme-c		Geometry		Model	Proposal	for	Planck	Scale	Space--me		Near	Horizon		Black	Hole	

Geometry 		
e.g.		AdS(2,R)≡	Near	Horizon	Geometry	of	Extremal	BHs	

								AdS(2,R)						→			AdS(2,Z)					→					AdS(2,	Z⁄Zn)		

	

Modular	ArithmeQc	DiscreQsaQon	exhibits:	
• Non-Locality	and	Strong	Chaos	for	single	parQcle	Probe	Dynamics 
• Finite	Hilbert	Space	of	States		for	Black	Hole	Horizon	microscopic	degrees	of	freedom	
• Fast	Scrambling	and	PropagaQon	for	Quantum	informaQon	
Goals: 
• Formula-on	of	Classical	and	Quantum		ChaoQc	Many-body		Lances	&		Field	theories.	(	Arnold’s	Cat	Map	Lances)	
• Formula-on	of	ArithmeQc	Quantum	Circuits	on	paper	and	their	possible	development	in	the	Lab	(	QI-QCT	@INPP) 

SIGMA 17 (2021) 004

Eur.Phys.J.C 78 (2018) 5, 412

JHEP 02 (2014) 109

https://doi.org/10.3842/SIGMA.2021.004
https://doi.org/10.1140/epjc/s10052-018-5850-9
https://doi.org/10.1007/JHEP02(2014)109


Integra(on	of	the	MIXMAX	Engine	into	the	CERN	Scien(fic	
So8ware	for	MC	Simula(ons:	CLHEP,	Geant4,	ROOT,	PYTHIA

Parameters of the MIXMAX Generator

K. Savvidy and G. Savvidy

Dimension Entropy Decorrelation Time Iteration Time Relaxation Time Period q
N h(T ) ·0 = 1

h(T )2N t · = 1
h(T ) ln 1

”v0
log10(q)

8 220 0, 00028 1 1,54 129
17 374 0,000079 1 1,92 294
240 8679 0,00000024 1 1,17 4389

Table 1: The MIXMAX parameters.

The MIXMAX is a genuine 61 bit generator on Galois field GF[p],
Mersenne prime number p = 261 ≠ 1.
Unique high resolution generator: ”v0 = 2≠61N .
Most generators provide only ”v0 = 2≠32N resolution.
A record generation time of 61 bit number is 4 nanosecond !
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[38] H. Euler and B. Kockel, Über die Streuung von Licht an Licht nach der Diracschen Theorie,

Naturwiss. 23 (1935) 246.

[39] J. S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664.

doi:10.1103/PhysRev.82.664

[40] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry

Breaking, Phys. Rev. D 7 (1973) 1888. doi:10.1103/PhysRevD.7.1888

[41] V. S. Vanyashin and M. V. Terentev, The Vacuum Polarization of a Charged Vector Field, Zh.

Eksp. Teor. Fiz. 48 (1965) no.2, 565 [Sov. Phys. JETP 21 (1965) no.2, 375].

[42] V. V. Skalozub, The Vacuum Polarization of the Charged Vector Field in the Renormalized

Theory, Yad. Fiz. 21 (1975) 1337.

[43] M. R. Brown and M. J. Du�, Exact Results for E�ective Lagrangians, Phys. Rev. D 11 (1975)

2124. doi:10.1103/PhysRevD.11.2124

34

Polarised   
Vacuum 

V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, New York, 2005.  

[18] L. P. Grishchuk, Amplification of gravitational waves in an isotropic universe, Zh. Eksp. Teor.

Fiz. 67 (1974) 825-838; [Sov. Phys. JETP 40 (1975) 409];

L. P. Grishchuk, Graviton creation in the early universe , Ann. NY Acad. Sci. 302 (1977) 439,

https://doi.org/10.1111/j.1749-6632.1977.tb37064.x

[19] L. P. Grishchuk, Primordial gravitons and possibility of their observation, Písma Zh. Eksp.

Teor. Fiz. 23 (1976) 326 [JETP Lett. 23 (1976) 293]

[20] A. A. Starobinsky, Spectrum of relict gravitational radiation and early state of the universe,

Písma Zh. Eksp. Teor. Fiz. 30 (1979) 719 (1979) [JETP Lett. 30 (1979) 683 ]

[21] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.

Lett. B 91 (1980), 99-102 doi:10.1016/0370-2693(80)90670-X

[22] V. A. Rubakov, M. V. Sazhin and A. V. Veryaskin, Graviton Creation in the Inflationary Uni-

verse and the Grand Unification Scale, Phys. Lett. B 115 (1982), 189-192, doi:10.1016/0370-

2693(82)90641-4

[23] P. J. E. Peebles and A. Vilenkin, Quintessential inflation, Phys. Rev. D 59 (1999), 063505;

doi:10.1103/PhysRevD.59.063505 [arXiv:astro-ph/9810509 [astro-ph]].

[24] Y. B. Zel’dovich, The Cosmological constant and the theory of elementary particles,

Sov. Phys. Usp. 11 (1968) 381

[Usp. Fiz. Nauk 95 (1968) 209]. http://dx.doi.org/10.1070/PU1968v011n03ABEH003927; JETP

Lett. 6 (1967) 316

[25] S. Weinberg, The Cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1-23

[26] S. L. Adler, Einstein Gravity as a Symmetry-Breaking E�ect in Quantum Field Theory, Rev.

Mod. Phys. 54 (1982) 729; doi:10.1103/RevModPhys.54.729

[27] J. F. Donoghue, The cosmological constant and the use of cuto�s, [arXiv:2009.00728 [hep-th]].

[28] R. Pasechnik, G. Prokhorov and O. Teryaev, Mirror QCD and Cosmological Constant, Universe

3 (2017) no.2, 43 doi:10.3390/universe3020043 [arXiv:1609.09249 [hep-ph]].

[29] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936)

714.

31



ACFI-T20-10

The cosmological constant and the use of cuto↵s

John F. Donoghue⇤

Department of Physics, University of Massachusetts,
Amherst, MA 01003, USA

Of the contributions to the cosmological constant, zero-point energy and self energy contributions
scale as ⇤4 where ⇤ is an ultraviolet cuto↵ used to regulate the calculations. I show that such
contributions vanish when calculated in perturbation theory. This demonstration uses a little-known
modification to perturbation theory found by Honerkamp and Meetz and by Gerstein, Jackiw, Lee
and Weinberg which comes into play when using cuto↵s and interactions with multiple derivatives,
as found in chiral theories and gravity. In a path integral treatment, the new interaction arises from
the path integral measure. This reduces the sensitivity of the cosmological constant to the high
energy cuto↵ significantly, although it does not resolve the cosmological constant problem. The
feature removes one of the common motivations for supersymmetry. It also calls into question some
of the results of the Asymptotic Safety program. Covariance and quadratic cuto↵ dependence are
also briefly discussed.

PACS numbers:

I. CUTOFFS AND ZERO-POINT ENERGY

In regularizing quantum field theories, dimensional
regularization is the most common and useful choice,
partially because it preserves all the symmetries of the
theory. However, cuto↵s also plays a role in our thinking
about physics. Part of this is the legacy of the history
of cuto↵ regularization. But there is also some genuine
physics involved. We think of e↵ective field theories as
being valid up to some energy scale, and a cuto↵ can
parameterize this limit of validity of the e↵ective field
theory. In addition, running couplings depend on the en-
ergy scale and cuto↵s are sometimes used in their descrip-
tion. But if we are to use cuto↵s, our thinking should be
aligned with the underlying calculations. In this paper, I
describe how direct calculations of the cosmological con-
stant using a cuto↵ di↵er from our common description,
and show the need for a new interaction term when using
cuto↵s with gravity.

In discussing the cosmological constant problem, we
note that ⇤cc corresponds to the vacuum energy density,
for which there are many contributions. One which is
normally mentioned is the zero-point energy. When cal-
culated for a scalar field, using canonical quantization
one writes

E0 =

Z
d3p

(2⇡)3
1

2
!p ⇠

1

16⇡2
⇤4 (1)

where in the second form I have cuto↵ the divergent
momentum integral at a scale ⇤. (Unfortunately, the
standard convention is to call both the vacuum energy
and the cuto↵ by the symbol ⇤. I will always put the

⇤Electronic address: donoghue@physics.umass.edu

cc subscript on the cosmological constant, i.e. ⇤cc).
Since the measured value of the cosmological constant
is ⇤cc ⇠ (10�3 eV)4 and we might trust the zero-point
energy calculation up to the Planck mass, this leads to
the common complaint about this being the “worst pre-
diction ever - failing by 120 orders of magnitude”. One
of the motivations for supersymmetry is to cancel these
e↵ects by having equal numbers of boson and fermion
degrees of freedom.

This calculation is inadequate, as it is not covariant.
Indeed if we calculate all the components of the energy
momentum tensor using canonical quantization, we find
the ⇤4 contribution to the vacuum values is

Tµ⌫ |0 = diag(1,
1

3
,
1

3
,
1

3
)⇥

1

16⇡2
⇤4 (2)

such that this divergent part of the vacuum value is trace-
less, ⌘µ⌫Tµ⌫ |0 = 0. Since the contribution to the cosmo-
logical constant can equally be identified with the trace
of the energy momentum tensor

Tµ

µ
= 4⇤cc , (3)

we could equally well conclude that this contribution to
the cosmological constant is zero. The second quantiza-
tion calculation of the zero-point energies and momenta is
not compatible with Lorentz invariance of the vacuum.
The point is that covariance requires an e↵ect propor-
tional to ⌘µ⌫ .
The covariance problem can be resolved by using quan-

tum field theory to calculate the contribution to the cos-
mological constant. The cosmological constant appear in
the gravitational action as

Sgrav =

Z
d4x

p
�g


�⇤cc +

2

2
R+ ...

�

=

Z
d4x


�⇤cc

✓
1 +

1

2
⌘µ⌫hµ⌫

◆
+ ...

�
(4)
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The contribution of zero-point energy exceed by many orders of 
magnitude the observational cosmological upper bound on the 

energy density of the universe   
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Thanks for you explanation of Donoghue’s article. Apart from my misguided remark about

< Tµ‹ >= �
4
(≠1, 1/3, 1/3, 1/3), (0.12)

it should of course be

< Tµ‹ >= �
4
÷µ‹ (0.13)

as Donoghue also write in (6) and (7), I still think that the article is wrong. In fact (6) and (7) are just

correct in flat spacetime and even textbook stu�. The point is of course that it can be renormalized

away by adding a ”cosmological” term even in flat spacetime.

If you have a non-trivial metric which goes slowing and nicely into flat spacetime then of course

the corresponding calculations when the gravitational field is a background field should also do so.

The result cannot just jump from �
4

to zero if one adds a infinitesimal gravitational background field.

And it does not. First of all, let us use a regulator which is explicitly di�eomorphism invariant: the

Pauli-Villars regularisation. It consists itself of a number of scalar field (coupled to the background

geometry). Thus there is no question about �
4

being gauge invariant or not, it is simply proportional

to the combinations of powers of the invariant masses appearing in the PV action. When explicitly

calculating < Tµ‹ > in (6) obtains

Const x M
4
, (0.14)

where the three Masses needed are proportional to M .

As an example one can take Donoghue’s formula (45) without the subtraction of the 1 in the

integrand, which he (very sloppily) attributes to the term (41). In Pauli-Villas Regularisation this

tadpole term will be
⁄
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The calculation of the e�ective Lagrangian in QED by Heisenberg and Euler was the first example of

a well-defined physically motivated prescription allowing to obtain a finite, gauge and renormalisation

group invariant results when investigating the vacuum fluctuations of quantised fields. It appears that

only the di�erence between vacuum energy in the presence and in the absence of the external sources

has a well defined physical meaning. Here we will follow this prescription and will derive the quantum

equation of state for the non-Abelian gauge fields using e�ective Lagrangian approach and analyse the

properties of Friedmann cosmology that is driven by the quantum Yang-Mills equation of state.

Thanks for you explanation of Donoghue’s article. Apart from my misguided remark about

< Tµ‹ >= �
4
(≠1, 1/3, 1/3, 1/3), (0.14)

it should of course be

< Tµ‹ >= �
4
÷µ‹ (0.15)

as Donoghue also write in (6) and (7), I still think that the article is wrong. In fact (6) and (7) are just

correct in flat spacetime and even textbook stu�. The point is of course that it can be renormalized

away by adding a ”cosmological” term even in flat spacetime.

If you have a non-trivial metric which goes slowing and nicely into flat spacetime then of course

the corresponding calculations when the gravitational field is a background field should also do so.

The result cannot just jump from �
4

to zero if one adds a infinitesimal gravitational background field.

3

The vacuum energy density     

George Savvidy  

Annals Phys. 436 (2022) 168681 

e-Print: 2109.02162   

https://arxiv.org/abs/2109.02162
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is the dimensional transmutation scale of YM theory  
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Polarisation of the YM Vacuum and the Effective Lagrangians    
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The calculation of the e�ective Lagrangian in QED by Heisenberg and Euler was the first example of

a well-defined physically motivated prescription allowing to obtain a finite, gauge and renormalisation

group invariant results when investigating the vacuum fluctuations of quantised fields. It appears that

only the di�erence between vacuum energy in the presence and in the absence of the external sources

has a well defined physical meaning. Here we will follow this prescription and will derive the quantum

equation of state for the non-Abelian gauge fields using e�ective Lagrangian approach and analyse the

properties of Friedmann cosmology that is driven by the quantum Yang-Mills equation of state.
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1 Introduction

In this article we shall analyse the e�ective action in QED and QCD by using the perturbative

loop expansion and renormalisation group equations and discuss the physical consequences which

can be derived from their explicit expressions. We shall reexamine the phenomena of the chro-

momagnetic gluon condensation in Yang-Mills (YM) theory and will present the derivation of

the new results. The Heisenberg-Euler Lagrangian in QED [1, 2, 3, 4, 5, 6] is a sum of the one

loop diagrams with a vacuum electron-positron pair circulating in the loop and the gluons and

quarks in case of QCD [7, 8, 9, 10, 11, 12, 13, 14]. The e�ective action �[A] has the following

representation:

� =
⁄

Ldx =
ÿ

n

⁄
dx1...dxn�(n)a1...an

µ1...µn
(x1, ..., xn)Aa1

µ1(x1)...Aan

µn
(xn) = S + W

(1) + W
(2) + .., (1.1)

where L is the e�ective Lagrangian, �(n) is a one-particle irreducible (1PI) n-point vertex function,

A
a
µ(x) © È0|Aa

µ(x)|0Í is the vacuum expectation value of the field operator and W
(n)

, n = 1, 2, ..

represent the terms of the loop expansion.

We shall consider the limit of massless electrons and quarks and demonstrate that the proper

time integral in the Heisenberg-Euler Lagrangian can be calculated explicitly by using covariant

renormalisation condition [11, 13, 14]

ˆL
ˆF |

t= 1
2 ln( 2e2|F|

µ4 )=G=0
= ≠1, (1.2)

where F = 1
4G

a
µ‹G

a
µ‹ is the Lorentz and gauge invariant form of the YM field strength tensor G

a
µ‹

and µ
2 is the renormalisation scale parameter. In the massless limit the QED e�ective Lagrangian

has the exact logarithmic dependence as a function of the invariant F (see Fig.1):

Le = ≠F + e
2F

24fi2

Ë
ln(2e

2F
µ4 ) ≠ 1

È
, F = H̨2 ≠ Ę2

2 , G = ĘH̨ = 0, (1.3)

where H̨ and Ę are magnetic and electric fields. This expression should be compared with the

one-loop e�ective Lagrangian in pure SU(N) gauge field theory, which has the form [11, 13] (see

Fig.2):

Lg = ≠F ≠ 11N

96fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
, F = H̨2

a ≠ Ę2
a

2 > 0, G = ĘaH̨a = 0 . (1.4)

From (1.3) it follows that the corresponding quark contribution considered in the chiral limit is

Lq = ≠F + Nf

48fi2 g
2F

Ë
ln(2g

2F
µ4 ) ≠ 1

È
, (1.5)
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2 Quantum Yang-Mills Equation of State

We will assume here that the universe has in it only fluctuating vacuum gauge fields and will neglect

the contributions to the energy density from radiation, elementary particles of the Standard Model

or of the Grand Unification Models (GUM). The contribution of the radiation and of other matter

components can be added afterwards. We will derive the equation of state by using the explicit

expression for the e�ective Lagrangian in the Yang-Mills gauge field theory [1, 2, 3, 4, 5]. The e�ective

Lagrangian is a sum of the Heisenberg-Euler Lagrangian Lq [29] taken in the limit of massless chiral

fermions [2]:

Lq = ≠F + Nf

48fi2 g
2F

Ë
ln(2g

2F
µ4 ) ≠ 1

È
, (2.9)

where Nf is the number of fermion flavours and of the Yang-Mills e�ective Lagrangian Lg for SU(N)

gauge field theory [1, 2, 3]:

Lg = ≠F ≠ 11N

96fi2 g
2F

1
ln 2g

2F
µ4 ≠ 1

2
, F = 1

4G
2
µ‹ = H̨2

a ≠ Ę2
a

2 > 0, G = ĘaH̨a = 0 , (2.10)

where H̨a and Ęa are chromomagnetic and chromoelectric vacuum fields. The one-loop e�ective La-

grangian has exact logarithmic dependence on the invariant F = 1
4G

2
µ‹ . The e�ective Lagrangian

allows to obtain the quantum energy momentum tensor Tµ‹ by using the expressions (2.9) and (2.10)

[2]:

Tµ‹ = T
Y M
µ‹

Ë
1 + b g

2

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

b g
2

96fi2 F , G = 0, (2.11)

where b = 11N ≠ 2Nf . The vacuum energy density has therefore the following form:

T00 © ‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2

(2.12)

and the spacial components of the stress tensor are:

Tij = ”ij

Ë1
3F + 1

3
b g

2

96fi2 F
1

ln 2g
2F

µ4 + 3
2È

= ”ij p(F). (2.13)

Thus we have the following quantum gauge field theory equation of state:

‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
, p(F) = 1

3F + 1
3

b g
2

96fi2 F
1

ln 2g
2F

µ4 + 3
2
. (2.14)

The energy density ‘(F) has its minimum outside of the perturbative vacuum state F = 0 at the

Lorentz and renormalisation group invariant field strength [1]

2g
2Fvac = µ

4 exp (≠ 96fi
2

b g2(µ)) = �4
Y M , (2.15)
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Figure 1: There are regions in the phase space (‘, p) of the quantum Yang-Mills states (2.16) where ‘

and p are positive, where p is positive and ‘ is negative and where they are both negative.

which characterises the dynamical breaking of scaling invariance of YM theory (2.11):
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By expressing the vacuum field strength tensor F in terms of vacuum pressure F = F(p) and substi-

tuting it into the vacuum energy density we will get the equation of state in the form ‘ = ‘(p) shown

in Fig.1. In the limit 2g
2F ∫ �4

Y M (2.16) reduces to a radiation equation of state: p = ‘/3. There

are regions in the phase space of states (‘, p) where ‘ and p are positive, where p is positive and ‘ is

negative and where they are both negative, as it is shown in Fig. 1. The pressure is always higher

than in the case of radiation equation of state:
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It also follows from the energy momentum-tensor expression (2.11) that when the gauge field is in its

ground state (2.15), T
µ‹ is proportional to the space-time metric g

µ‹ :

T
µ‹
vac = ≠g

µ‹ b

192fi2 2g
2Fvac, (2.18)

and equation of state reduces to the equation p = ≠‘ > 0. The equation of state p = ≠‘ > 0

is equivalent to having a fluid of positive pressure and negative energy density alternative to the

inflation that is driven by a scalar field (1.6).

In the next sections we will analyse the Freidmann cosmology that is driven by the vacuum gauge

field theory equation of state (2.16). The Einstein equation in the presence of the vacuum energy
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where H̨a and Ęa are chromomagnetic and chromoelectric vacuum fields. The one-loop e�ective La-

grangian has exact logarithmic dependence on the invariant F = 1
4G

2
µ‹ . The e�ective Lagrangian

allows to obtain the quantum energy momentum tensor Tµ‹ by using the expressions (2.9) and (2.10)

[2]:

Tµ‹ = T
Y M
µ‹

Ë
1 + b g

2

96fi2 ln 2g
2F

µ4

È
≠ gµ‹

b g
2

96fi2 F , G = 0, (2.11)

where b = 11N ≠ 2Nf . The vacuum energy density has therefore the following form:

T00 © ‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2

(2.12)

and the spacial components of the stress tensor are:

Tij = ”ij

Ë1
3F + 1

3
b g

2

96fi2 F
1

ln 2g
2F

µ4 + 3
2È

= ”ij p(F). (2.13)

Thus we have the following quantum gauge field theory equation of state:

‘(F) = F + b g
2

96fi2 F
1

ln 2g
2F

µ4 ≠ 1
2
, p(F) = 1

3F + 1
3

b g
2

96fi2 F
1

ln 2g
2F

µ4 + 3
2
. (2.14)

The energy density ‘(F) has its minimum outside of the perturbative vacuum state F = 0 at the

Lorentz and renormalisation group invariant field strength [1]

2g
2Fvac = µ

4 exp (≠ 96fi
2

b g2(µ)) = �4
Y M , (2.15)

4

where ‘ is the energy density, p is a pressure, and ȧ = da/cdt. The scale factor a(t) enters into the

metric as [17, 11, 14]
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These are comoving coordinates; the universe expands or contracts as a(t) increases or decreases, and

the matter coordinates remain fixed. The conformal time ÷ is defined as cdt = a(÷)d÷. It is convenient

to transform the Friedmann equations (1.1) into the following form [17, 11, 14]:
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tuting it into the vacuum energy density we will get the equation of state in the form ‘ = ‘(p) shown
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Y M (2.16) reduces to a radiation equation of state: p = ‘/3. There
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It also follows from the energy momentum-tensor expression (2.11) that when the gauge field is in its

ground state (2.15), T
µ‹ is proportional to the space-time metric g
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and equation of state reduces to the equation p = ≠‘ > 0. The equation of state p = ≠‘ > 0

is equivalent to having a fluid of positive pressure and negative energy density alternative to the

inflation that is driven by a scalar field (1.6).

In the next sections we will analyse the Freidmann cosmology that is driven by the vacuum gauge

field theory equation of state (2.16). The Einstein equation in the presence of the vacuum energy
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It follows that the induced e�ective cosmological term can be expressed in terms of vacuum energy

density (2.16) and vacuum field (2.15) as
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During the cosmological evolution the field strength tensor F will not stay constantly in its ground

state (2.15) but will roll through the well-defined trajectory in the phase space of states (‘, p), which

is defined by the Freidmann equations (1.1) and (1.3), (1.4).

In general relativity there is no covariantly constant gauge fields and the time evolution of the gauge

field is described by the Yang-Mills equation in the background gravitational field or equivalently can

be defined through the covariant conservation of the energy-momentum tensor: Tµ‹;‹ = 0. It is the

last option we will use in the next section in solving the Freidmann equations. Time-dependent space

homogeneous solutions of the Yang-Mills equations were first considered in [64, 65, 66] and recently

in the context of the cosmological models in [67, 68, 70, 70, 71].

3 Quantum Yang-Mills Equation of State and Friedmann Cosmology

The time derivative of the energy density given in (2.16) is
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where Ḟ = dF/cdt. The time evolution of the energy density ‘ in (1.3) depends on the sign of the

sum ‘ + p. By using the expressions for ‘ and p in (2.16) for the sum ‘ + p we will obtain:
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It follows that for 2g
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Y M the weak energy dominance condition ‘ + p Ø 0 is violated. The

equation (1.3) now takes the form
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and can be integrated yielding

2g
2F a

4 = const © �4
Y M a

4
0, (3.25)

where the integration constant is parametrise in terms of a initial data parameter a0. The energy

density and pressure (2.16) can now be expressed in terms of the scale factor a(t) as:

‘ = Aa
4
0

a4

1
log a

4
0

a4 ≠ 1
2
�4

Y M , p = A a
4
0

3a4

1
log a

4
0

a4 + 3
2
�4

Y M . (3.26)

6

The YM field strength    is not a constant function of time but evolve in time in accordance 
with the Friedmann equations, thus the cosmological term here is time dependent   

Figure 1: There are regions in the phase space (‘, p) of the quantum Yang-Mills states (2.16) where ‘

and p are positive, where p is positive and ‘ is negative and where they are both negative.

which characterises the dynamical breaking of scaling invariance of YM theory (2.11):

Tµµ = ≠ b

48fi2 2g
2Fvac.

Using the above expressions the equation of state (2.14) will take the following form:

‘(F) = b g
2

96fi2 F
1

ln 2g
2F

�4
Y M

≠ 1
2
, p(F) = 1

3
b g

2

96fi2 F
1

ln 2g
2F

�4
Y M

+ 3
2
. (2.16)

By expressing the vacuum field strength tensor F in terms of vacuum pressure F = F(p) and substi-

tuting it into the vacuum energy density we will get the equation of state in the form ‘ = ‘(p) shown

in Fig.1. In the limit 2g
2F ∫ �4

Y M (2.16) reduces to a radiation equation of state: p = ‘/3. There

are regions in the phase space of states (‘, p) where ‘ and p are positive, where p is positive and ‘ is

negative and where they are both negative, as it is shown in Fig. 1. The pressure is always higher

than in the case of radiation equation of state:

p = 1
3‘ + 4

3
b g

2

96fi2 �4
Y M . (2.17)

It also follows from the energy momentum tensor expression (2.11) that when the gauge field is in its

ground state (2.15) the T
µ‹ is proportional to the space-time metric g

µ‹

T
µ‹
vac = ≠g

µ‹ b

192fi2 2g
2Fvac (2.18)

and equation of state reduces to the equation p = ≠‘ > 0. However here the pressure is positive and

the energy density is negative alternative to the inflation that is driven by a scalar field (1.6).

In the next sections we will analyse the Freidmann cosmology that is driven by the vacuum gauge

field theory equation of state (2.16). The evolution equation in the presence of the vacuum energy

momentum tensor (2.11) has the following form:

Rµ‹ ≠ 1
2gµ‹R = 8fiG

c4

Ë
T

Y M
µ‹

1
1 + b g

2

96fi2 ln 2g
2F

µ4

2
≠ gµ‹

b g
2

96fi2 F
È
. (2.19)
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• The Type I-IV solutions of the Friedmann equations induced by the gauge field theory vacuum 
polarisation provide an alternative inflationary mechanism and a possibility for late-time acceleration. 

• The Type II solution of the Friedmann equations generates the initial exponential expansion of the 
universe of finite duration and the Type IV solution demonstrates late time acceleration. 

• The solutions fulfil the necessary conditions for the amplification of primordial gravitational waves.
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