

The ATLAS/LHC Demokritos group research activities

Theodoros Geralis NCSR Demokritos 6/6/2024

OUTLINE

- The ATLAS New Small Wheel Muon Upgrade
 - sTGC Trigger/Detector
 - NSW Software development
 - Physics Analysis: Z mass
- Instrumentation Laboratory DAMA
 - Resistive Micromegas R&D
 - Picosec Micromegas
 - Real x-y microbulk micromegas
 - Micromegas and use of graphene

FTE Students meeting 6 June 2023, NCSR "DEMOKRITOS", Athens, Greece

Theo Geralis

NCSR Demokritos full member of ATLAS since Oct. 2017

Researchers

Georgios Fanourakis (Emeritus) Theodoros Geralis (Team representative) : geral@inp.demokritos.gr Georgios Stavropoulos Andreas Psallidas

Doctoral Students

Olga Zormpa

Master Thesis

Elena Kanellaki **Technician (Electronics)**

Yannis Kiskiras

- : gfan@inp.demokritos.gr
- : stavrop@inp.demokritos.gr
- : Andreas.Psallidas@cern.ch

The ATLAS Experiment - Upgrade

- ATLAS General purpose detector
- Muon Small wheels: Between the End-cap Calorimeter and End-cap Toroid
- 10 m in diameter
- Consist of:
 - Cathode Strip Chambers (CSC)
 - Thin Gap Chambers (TGC)
 - Monitor Drift Tube (MDT)
- Coverage: 1.3 < | η | < 2.7

NEW SMALL WHEELS Mechanical structure

6/6/2024

Operation principle MMs and sTGC (NSW Technologies)

Micromegas - 2.1 Million Channels

MM strips for tracking, first hit for trigger -Strip pitch: 450 μm -Precision: ~ 100 μm/layer -Data rates: Up to 8 Gbps/plane 6/6/2024

New Small Wheels (NSW)

- Work at high background rates (n, γ) 20kHz/cm²
- Will provide online high angle resolution (σ_{θ} ~1mrad)
- Spatial resolution at 100 μm
- Significant reduction of fake triggers

sTGC - 330 k Channels

- sTGC wires/strips for tracking, strips/pads for trigger
 - Precision: ~ 100 μ m/layer
 - Data rates: up to 1.77 Gbps/plane

6/6/2024

THEO GELANS

NSW: Impact on Physics

- Toroid Magnetic field requires dense tracking → NSW
- Possibility for proper reconstruction to the IP and resolve pile-up events (up to 150 in HL-LHC)
- Reconstruction of $\mu P_T \sim 10 \text{ GeV}$
- Keep efficiency and acceptance very high > 90% at HL
- Trigger rates without NSW:
 P_T > 40 GeV → single µ- Trigger rate 60kHz
- Trigger rates with NSW:
 - $P_T > 20 \text{ GeV} \rightarrow \text{single } \mu\text{-} \text{Trigger rate } 20 \text{kHz}$
- Can keep lower P_T (>10GeV) subleading μ

Example: H→WW*→lvlv

A P_T cut at 40 GeV would suppress most of the signal

Higgs production by VBF: Lower cross section but distinct signature

High P_T (>100 GeV) μ require high precision and high efficiency tracking NSW: 16 layers, high efficiency in high occupancy Allow physics channels with high mass Z', W', Higgs boson A decaying to muons

Higgs coupling to Vector Bosons

ATLAS Simulation

WH→µvbb

 p_{\perp} (μ from W) [GeV]

Via Higgs-strahlung: $pp \rightarrow WH$

Trigger on leptons from W decays

ATLAS

Η ομάδα του ΙΠΣΦ/ΕΚΕΦΕ Δημόκριτος έχει αναλάβει σημαντικές υπευθυνότητες στο πείραμα ΑΤΛΑΣ INPP: Muon System software coordination, NSW Trigger, Physics Analysis

Προσφέρεται ένα θέμα για εκπόνηση Διπλωματικής Μάστερ:

«Φυσική με το νέο ανιχνευτή μιονίων New Small Wheel – Ανάπτυξη αλγόριθμου για την βέλτιστη επιλογή μιονίων με το σύστημα του σκανδαλισμού»

Προαπαιτούμενα: Καλή γνώση C++

DAMA instrumentation RD

DAMA INFRASTRUCTURE

•THREE FULLY EQUIPPED TEST BENCHES FOR STUDYING MPGDs •Electronics Rack, Gas distribution, Workstation, Osciloscope

•NEW GAS MIXER and distribution of premixed gases

(K. Damanakis)
•Mixing 3 gases
•Operate at pressure range 100 mbar - 2 bar

•ELECTRONICS AND DAQ SYSTEMS

•VME Data Acquisition (Controller, CRAMS, sequencer, ADC, Gate gen.
•SRS - Scalable Readout System (APV FE, 2000 channels readout)
•FEMINOS readout for TPC mode

•Electronics: Racks (1 VME and 4 NIM crates), NIM units

(Multifunction NIM modules, Amplifiers, Discrim., HV PS, LV PS,

Pulse generators, NIM/TTL/NIM conv, etc), MCAs (2), Preamps •DESIGN PACKAGES

•COSMIC STAND (Olga Zormpa, George Stavropoulos)

•Scintillator based cosmic veto for triggering on muons •Used for studies of the Micromegas

•CLEAN ROOM (12 m² – two rooms Class 10,000 and Class 100,000) •Microscope

Examples of Students works

This is our ambition

- 1) Two-gas phase detector separated by a Graphene layer
- Exploit differences in gas properties 2) to improve performance
- Should have high electron 3) transparency (test to be performed)
- It may be used to eliminate ion 4) backflow

We have placed a graphene

surface of 1 x 1 cm²

ALTI : Double VME board **Upgrade** to the current timing, trigger and control (TTC) system

Primary function: Interfaces the Level-1 **Central Trigger Processor** and the **TTC network** to the front-end electronics of each of the ATLAS sub-detector

#								Currently provides an artificially generated
#						М		
#						u		pulse pattern with the TTC information
#						1		puise pattern with the Tre information
#						t		
#						i		and the Bunch Crossing clock at 40 MHz
#						р		8
#						1		for data synchronization
#		CCC	_			i		ior data synchronization.
#		BKKK	1	BBBB	111	c		
#	0	UEEE	T	GGGG	TTTL	1		
#	R	SQQQ	Y	0000	RRR1	t		
#	В	Y210	Р	3210	321A	у		
#								
	1	0000	0000	0000	0000	40	#	orbit signal
	0	0000	0000	0000	0000	11		
	0	0000	0000	0000	0000	1	#	BCK SIGNAL
	0	0000	0000	0000	0000	99	щ	toot uulee simul
	0	0000	0000	0000	0000	1	#	test puise signal
	0	0000	0000	0000	0000	1	#	114 signal
	0	0000	0000	0000	00001	7 7 7	#	LIA SIGNAL
	1	0000	0,000	0000	0000	10	2 #	LAC OFDIC OF 5504 DC -7 11.245 KHZ
	0	0000	0100	0000	0000	40 11		
	U	0000	0,00	0000	0000	тТ		

HEEL

- Irradiation with γ (¹³⁷Cs 662 keV) ٠ at LHC expected fluxes
- Aim: 1) measure µ efficiencies • under irradiation

2) Measure fake rates

250 Radius (cm) Pad Efficiency vs Radius (50ns) 4_scinti

300

350

400

200

100

150

Gamma Irradiation Facility

Gas Mixer System in ELEA

Designed by T. Geralis, developed by Kostas Damanakis, Athanasia Papaioannou.

Goals

- Mixing three different gases and filling the Micromegas Detector with the gas mixture
- Choosing to mix the gases with the mixing system in order to minimize the imperfections that could possibly exist in industrially developed gases
- Study and improve the efficiency of the MMs under different gas mixtures

Cosmic Stand

Eva Eleftheriou, Stathis Logothetis (Practice students), Olga Zormpa (Masters student)

Goal: Design, set up and installation of a cosmic stand. **Purpose:** Reconstruction of muon tracks. Test and calibration of detectors (mainly MicroMeGaS)

Monitoring of DAMA lab environmental variables

<u>Practice Students</u>: Alexopoulos I., Giannakopoulos D., Remoundou Th. <u>Masters Student</u>: Kannelos N. <u>Technician</u>: Kiskiras I.

4 Arduino-based modules designed and constructed. PC communication via Bluetooth (3 modules) and USB (1 module) Commercial sw (WinCC) used for monitoring.

				Arduino_62			
Temperature [emperature]	Humidity Humidity	Pressure Pressure	Archiving Temperature	Temperature Temperature	Humidity Humidity	Pressure Pressure	Archiving Temperatu
25.87 °C	46.89 %	988.09 hPa	Archiving Humidity Archiving	27.4 °C	46.1 %	988.35 hPa	Archiving Humidity Archiving
h.		kr.	Pressure	E.	M	ŀr.	Pressure
ON OFF	ON OFF	ON OFF		ON OFF	ON OFF	ON OFF	
	ON ALL	OFF ALL			ON ALL	OFF ALL	
Arduino AE				- Arduino AD			
Arduino_AE	Humidity Humidity	Pressure Pressure	Archiving Temperature	Arduino_AD Temperature	Humidity Humidity	Pressure Pressure	Archiving Temperatu
Arduino_AE Temperature emperature 29.6 °C	Humidity Humidity 37.5 %	Pressure Pressure 988.09 hPa	Archiving Temperature Archiving Humidity Archiving	Arduino_AD Temperature 7emperature 27.2 °C	Humidity Humidity 44.9 %	Pressure Pressure 987.54 hPa	Archiving Temperatu Archiving Humidity Archiving
Arduino_AE Temperature 29.6 °C	Humidity Humidity 37.5 %	Pressure Pressure 988.09 hPa	Archiving Temperature Archiving Humidity Archiving Pressure	Arduino_AD Temperature 27.2 °C	Humidity Humidity 44.9 %	Pressure Pressure 987.54 hPa	Archiving Temperatu Archiving Humidity Archiving Pressure
Arduino AE Temperature 29.6 °C 29.6 °C 0N OFF	Humidity Humidity 37.5 %	Pressure Pressure 988.09 hPa	Archiving Temperature Archiving Humidity Archiving Pressure	Arduino_AD Temperature 27.2 °C M ON OFF	Humidity Humidity 44.9 %	Pressure Pressure 987.54 hPa	Archiving Temperatu Archiving Humidity Archiving Pressure

Work by the Practical students: Stamatis Tzanos, Vasilis Blanas

Build 2 Gas Flow Controllers

Work on the "Real x-y Segmented Microbulk": First real x-y with 700 µm strip pitch

Working in the Clean Room

Preparing the Cloud Chamber For Researcher's Night