

Nuclear Physics and Applications

presented by Dr. A. Lagoyannis on behalf of the NPA Group

DPMS, May 5, 2023

CALIBRA

Cluster of Accelerator Laboratories for Ion-Beam Research and Applications - CALIBRA

Single-sited NRI hosted by NCSR "Demokritos" currently implemented through the CALIBRA project

CALIBRA

Nuclear Astrophysics (p process: the astrophysical point-of-view)

p nucleus	(%)	p nucleus	(%)	p nucleus	(%)	
74_Se	0.89	114_Sn	0.65	156_Dy	0.06	
78_Kr	0.35	115_Sn	0.34	158_Dy	0.10	
84_Sr	0.56	120_Te	0.096	162_Er	0.14	
🔷 92_Mo	14.84	124_Xe	0.10	164_Er	1.61	
🏓 94_Mo	9.25	126_Xe	0.09	168_Yb	0.13	
🔷 96_Ru	5.52	130_Ba	0.106	174_Hf	0.162	
98_Ru	1.88	132_Ba	0.101	180_Ta	0.012	-
102_Pd	1.02	138_La	0.09	180_W	0.13	
106_Pd	1.25	136_Ce	0.19	184_Os	0.02	\leftarrow
108_Cd	0.89	138_Ce	0.25	190_Pt	0.01	-
113_ln	4.3	144_Sm	3.1	196_Hg	0.15	
112_Sn	0.97	152_Gd	0.20			

Solar system p-nuclei abundances

DPMS, May 5, 2023

NPA

Nuclear Astrophysics (σ-measurements: our methods & tools: 1/2)

details in review paper by: Sotirios V Harissopulos, Eur. Phys. J. Plus 133, 332 (2018) https://doi.org/10.1140/epjp/i2018-12185-8

2) $4\pi \gamma$ -summing technique

Developed by our Group: A. Spyrou et al., Phys. Rev. C 76, 015802 (2007); http://dx.doi.org/10.1103/PhysRevC.76.015802

Ion Beam Analysis

- Ion Beam Analysis (IBA) is based on the interaction of a high-energy charged particle with the electrons and the nuclei of the material atoms.
- This interaction can lead to the emission of particles or radiation the energy of which is characteristic of the elements that constitute the sample material.

Method	Interaction	Ideal for
Backscattering Spectrometry (RBS/EBS)	Elastic scattering at backward angles	Depth profiling of heavy elements in light or medium-Z matrices
Elastic Recoil Detection Analysis (ERDA)	Elastic recoil at forward angles	Depth profiling of light elements
Nuclear Reaction Analysis (NRA)	Nuclear reaction between beam and target nuclei, producing a light charged particle	Depth profiling of light elements in high- or medium-Z matrices
Particle-Induced Gamma–ray Emission (PIGE)	Prompt γ -ray emission during ion beam irradiation	Bulk analysis of light elements from hydrogen to silicon
Particle-Induced X-ray Emission (PIXE)	Characteristic X-ray emission following ionization by the primary beam	Bulk analysis of elements with Z>11

Ion Beam Analysis

(JET results)

WHY:

To pass from troublesome method using standars to a standardless one **HOW:**

- Measurement of Differential Cross Sections for light Elements
- Development of a code for bulk analysis

- Electronically controlled turntable
- Initial angles: 0° 55° 90° 165°
- 4 HPGe detectors placed 30 cm from target
- Air cooled target

