
The General Idea  
 

Let 𝜇⃗(𝜆) = {𝜇1(𝜆), 𝜇2(𝜆), … 𝜇𝜄(𝜆) … , 𝜇𝑘(𝜆)} is the prediction of the mean number of events, 

which are expected to be observed in k bins of the relevant kinematical variables. Obviously 
this defines a histogram (of any number of dimensions) , e.g the theoretical expectations for 
k regions of the relevant kinematical variables (let us say: of energy, cosθ and L) will be a 3-d 
histogram of mxpxq = k bins. The predictions depend on several (e.g. ρ) parameter values, 

which are symbolized as 𝜆 = {𝜆1, 𝜆2, … , 𝜆𝜌}.  

 

Let us assume that we want to study the sensitivity of estimating the values of 𝜆 in the case 

that the true values of the parameters are  𝜆 =  𝜆𝑡⃗⃗⃗⃗  . 

1. Produce a histogram 𝑛⃗⃗(𝜆) = {𝑛1 (𝜆𝑡⃗⃗⃗⃗ ) , 𝑛2 (𝜆𝑡⃗⃗⃗⃗ ) , … 𝑛𝜄 (𝜆𝑡⃗⃗⃗⃗ ) … , 𝑛𝑘 (𝜆𝑡⃗⃗⃗⃗ )} such as that 

each ni has been chosen according to a Poissonian distribution with mean value 

𝜇𝜄 (𝜆𝑡⃗⃗⃗⃗ ) (𝑖. 𝑒.      𝑃(𝑛𝑖) =
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pseudo-data”. 
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Note that the expected values (predictions) are functions of the parameter 

values whilst the  pseudo-data, number of events, have been chosen for 𝜆 =

 𝜆𝑡⃗⃗⃗⃗ . 

II. Minimize the function Q(𝜆 ) = −𝑙𝑛 (ℒ(𝜆 )) with respect to 

{𝜆1, 𝜆2, … , 𝜆𝜌}  and estimate the Qmin,              𝜆⃗̂ = {𝜆̂1, 𝜆̂2, … , 𝜆̂𝜌} and the 

corresponding covariant matrix 
2. Repeat, many times, the step “1” by producing new pseudodata corresponding to 

the same value of  𝜆 =  𝜆𝑡⃗⃗⃗⃗   and, each time, estimate the parameter values by 
minimizing eq. (1), as well as Qmin and the corresponding covariant matrix.  

3. After step “2”, we have several estimations,  𝜆⃗̂𝑗 = {𝜆1, 𝜆̂2, … , 𝜆̂𝜌}
𝑗
 , j=1,2,3,…,Nexp, as 

well as Qj
min and the corresponding covariant matrices (Vj) each for every “pseudo-

experiment” (i.e. set of pseudo-data). 

4. The histogram (ρ-dimensions) of the 𝜆⃗̂𝑗 = {𝜆1, 𝜆̂2, … , 𝜆̂𝜌}
𝑗
 , j=1,2,3,…,Nexp, expresses 

the distribution of the estimated parameters (in principle are correlated, i.e the 
covariant matrix has non-zero the non-diagonal. elements). From these pseudo-
experiments, we can set unbias and consistent limits and errors. Also we can make 
pool-distributions to verify that each of the fits described in 1-II are unbias. 

 
 
Including the Background Contribution. 
 
In the case that the expected number of events per bin comprises signal and background, we 

should have, next to the signal prediction 𝑠(𝜆) = {𝑠1(𝜆), 𝑠2(𝜆), … 𝑠𝜄(𝜆) … , 𝑠𝑘(𝜆)}, and 



another prediction vector 𝑏⃗⃗ = {𝑏1, 𝑏2, … 𝑏𝜄 … , 𝑏𝑘} to account for the background 
contribution. We choose the pseudo-data for each bin by selecting, according to Poissanian 
distributions:  

a) an integer, 𝑛𝑠𝜄 (𝜆𝑡⃗⃗⃗⃗ ) , for the signal (with mean value equal to 𝑠𝜄 (𝜆𝑡⃗⃗⃗⃗ )) and  

b) another integer,  𝑛𝑏𝜄, for the background (with mean value equal to 𝑏𝜄) .  

Then, the pseudo-data contain in the Ith bin,  𝑛𝜄 (𝜆𝑡⃗⃗⃗⃗ ) = 𝑛𝑠𝜄 (𝜆𝑡⃗⃗⃗⃗ ) + 𝑛𝑏𝜄,  events. Note that the 

background is independent of the parameter values but participates in all the minimizations 

because 𝜇(𝜆) = 𝑠(𝜆) + 𝑏⃗⃗. We use eq. 1 for the likelihood function but we include background 

to both the predictions and the pseudo-data,  as explained above. 
 
 
Taking into account priors 
 
Assuming that previous experiments or other theories provide some prior knowledge on the 
parameter values, we can modify the likelihood function definition in order to incorporate 
such a knowledge into the estimator. We start with the Bayesian statistics. 

𝑃(𝜆|𝑛⃗⃗)  =
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Where 
 

𝑃(𝜆|𝑛⃗⃗): is the probability that the parameter values are 𝜆 given that the data are 𝑛⃗⃗. This is 

what we want to find from the data and our statistical model. 

𝑃(𝑛⃗⃗|𝜆): is the probability that the data are 𝑛⃗⃗,  given that the parameter values are 𝜆 . This is 

the likelihood function of eq. 1 

𝑃(𝜆): is the probability that the parameter values are 𝜆. This is the prior knowledge which 

can be expressed with the function, 𝑓(𝜆1, 𝜆2, … , 𝜆𝜌)𝑑𝜆1𝑑𝜆2 … , 𝑑𝜆𝜌 

𝑃(𝑛⃗⃗): is the probability to observe the data for any value of the parameters. In principle 

𝑃(𝑛⃗⃗) = [∫ ℒ(𝜆 )𝑓(𝜆1, 𝜆2, … , 𝜆𝜌)𝑑𝜆1𝑑𝜆2 … , 𝑑𝜆𝜌]𝑑𝑛1𝑑𝑛2 … , 𝑑𝑛𝑘 . But 𝑃(𝑛⃗⃗) is independent 

of the λ’s, it is a common numerical factor for all the likelihood values and obviously does 
not affect the minimum of eq. 2. 
 

We minimize the function ℒ(𝜆 )𝑓(𝜆1, 𝜆2, … , 𝜆𝜌) = ∏
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Taking into Account  Systematic Errors 
 
Let us assume that there are several other parameters (e.g. energy scale, cross section 
normalization, etc) which affect the predictions and let us say that we know their joint 
probability function, 𝑔(𝑝1, 𝑝2, … , 𝑝𝑚  ). As an example, it can be a m-dimensional Gaussian 
with Vg covariant matrix and 𝑝1̅̅̅, 𝑝2̅̅ ̅, … , 𝑝𝑚̅̅ ̅̅   the mean values. Then we write the likelihood 
with systematics as 



 𝐿𝑠𝑦𝑠𝑡(𝜆1, 𝜆2, … , 𝜆𝜌; 𝑝1, 𝑝2, … , 𝑝𝑚) = [ℒ(𝜆 , 𝑝1, 𝑝2, … , 𝑝𝑚)𝑓(𝜆1, 𝜆2, … , 𝜆𝜌)]𝑔(𝑝1, 𝑝2, … , 𝑝𝑚  ) 

(3) 
Where 

ℒ(𝜆, 𝑝1, 𝑝2, … , 𝑝𝑚 ) = ∏
𝜇(𝜆 , 𝑝1, 𝑝2, … , 𝑝𝑚)
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We can then minimize for ρ+m parameters. 
Another way is to write the likelihood as 

𝐿𝑠𝑦𝑠𝑡(𝜆1, 𝜆2, … , 𝜆𝜌)

= ∫[ℒ(𝜆 𝑝1, 𝑝2, … , 𝑝𝑚)𝑓(𝜆1, 𝜆2, … , 𝜆𝜌)]𝑔(𝑝1, 𝑝2, … , 𝑝𝑚  ) 𝑑𝑝1𝑑𝑝2, … 𝑑𝑝𝑚 

And minimize only for the λ’s. Unfortunately, the integration, for most of the cases, is 
difficult to be performed analytically and we must use numerical or statistical integration. 


