

Atmospheric neutrinos in ESSnuSB

Sampsa Vihonen

and muons too!

KTH Royal Institute of Technology

1st ESSnuSB+ WP5 in-person workshop

Table of Contents

- Introduction
- Theoretical overview
- Scientific objectives
- Roadmap
- Discussion and outlook

What are atmospheric neutrinos?

- Born when cosmic rays interact with atmosphere
- Wide range of energies:
 0.1 – 10 TeV
- Produced around atmosphere

Production processes:

 $\begin{array}{l} \boldsymbol{p}, \, \boldsymbol{A} + \mathrm{air} \\ & \rightarrow \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0} \\ & \rightarrow \mu^{\pm}, \nu_{\mu}, \overline{\nu}_{\mu} \\ & \rightarrow e^{\pm}, \nu_{e}, \overline{\nu}_{e}, \\ & \nu_{\mu}, \overline{\nu}_{\mu} \end{array}$

 $\begin{array}{c} \pi^+ \to \mu^+ \nu_\mu \\ \mu^+ \to e^+ \overline{\nu}_\mu \nu_e \end{array}$

http://www.aspera-eu.org/

What is there to know about atmospheric fluxes?

- Produced at about 15 km
- Up-down symmetric flux
- Average flux ~ 1 per min per cm^2
- Energies 100 MeV to 10 TeV
- Muon-to-electron neutrino ratio well known, ~2:1 at low energies

Phys.Rev.D 94 (2016) 5, 052001

What is there to know about atmospheric fluxes?

Phys.Rev.D 94 (2016) 5, 052001

ESSnuSB

Atmospheric neutrinos travel 15km to 13000km

12700 km

Traveled distance depends on the zenith angle

 ν_{μ}

12700 km

 u_{μ}

5/18/2023

Oscillograms

Sensitivities to mass hierarchy and CPV:

Distortions in ν_{μ} disappearance

If hierarchy is IH, these patterns are inverted.

Oscillation probabilities

Two-neutrino oscillations:

Need to adjust this for maximal v_e appearance

$$P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}, L) \cong \sin^{2}\theta_{23}\sin^{2}\theta_{13}^{m}\sin^{2}\left(1.27\frac{L}{E_{\nu}}(\Delta m_{31}^{2})^{m}\right)$$

$$\sin^2 \theta_{13}^m = \frac{\sin^2 2\theta_{13} \, (\Delta m_{31}^2)^2}{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$$

Effective parameters

$$(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$$

Oscillation probabilities

Two-neutrino oscillations:

Need to adjust this for maximal v_e appearance

$$P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}, L) \cong \sin^{2}\theta_{23}\sin^{2}\theta_{13}^{m}\sin^{2}\left(1.27\frac{L}{E_{\nu}}(\Delta m_{31}^{2})^{m}\right)$$

Resonance
condition
$$E_{\nu} = \frac{\Delta m_{31}^2 \cos 2\theta_{23}}{2\sqrt{2} G_F N_e} \sim 7 \text{ GeV}\left(\frac{4.5 \text{ g} \cdot \text{cm}^{-3}}{\rho}\right)$$

Earth tomography

Earth tomography

Reality is more complicated

- Many more layers to consider
- Allows tests on chemical composition of the Earth

C. Rott, A. Taketa and D. Bose, Sci. Rep. 5 (2015) 15225

Tau neutrino physics in ESSnuSB v_{μ} maximum 0.8 **Oscillation probabilities** v_{τ} production 0.6 maximum ~24GeV 0.4 0.2 0 15 10 20 25 30 35 40 45 50 E_v [GeV]

A. Donini et al., Phys. Rev D 78 (2008), 093003

Opportunities in ν_{τ} physics:

- Tests on PMNS unitarity
- Cross-sections
- New physics probes (non-unitarity, vector NSI...)

Tau neutrino physics in ESSnuSB

Opportunities in v_{τ} physics:

v_u maximum

- Tests on PMNS unitarity
- Cross-sections
- New physics probes (non-unitarity, vector NSI...)

Can we see v_{τ} ?

A. Donini et al., Phys. Rev D 78 (2008), 093003

Atmospheric muons

- Produced at similar numbers with atmospheric ν_{μ} and $\bar{\nu}_{\mu}$
- Very energetic
- Can be used for calibration
- Act as background to atmospheric neutrinos
- Crucial for cosmic neutrino searches

PDG, Chin.Phys.C 40 (2016) 10, 100001

Atmospheric physics at ESSnuSB

Excellent prospects at ESSnuSB far detector:

- 1Mt scale W.C. detectors
- 1km rock overburden
- Option for Gd doping

Scientific objectives

- What can atmospheric neutrinos tell us?
 - Mass hierarchy
 - Precision on standard parameters
 - Vector NSI
- Opportunities in Earth tomography
 - Core/mantle separation
 - Chemical composition
- Prospects in tau neutrino physics
 - Tests on PMNS unitarity
 - Advanced probes for new physics

Roadmap for atmospheric physics

Discussion and outlook

- ESSnuSB detector will have excellent prospects to study atmospheric neutrinos and muons
- Main scientific goals include MH and NSI sensitivities
- Further prospects in Earth tomography
- Simulations carried out with GENIE
- Applications nearly limitless, everyone is welcome to join!

Thank you for following!