ESSnuSB(+) Far Detector

Budimir Kliček Ruđer Bošković Institute, Zagreb

1st ESSnuSB+ WP5 in-person meeting 18 May 2023

Far detector position

Selected baseline:

- Zinkgruvan mine, 360 km from the source, partly covernig 1st and 2nd maximum
 - Number of interactions at 2nd maximum similar to Garpenberg

Alternative (not selected)

Garpenberg mine, 540 km from the neutrino source, corresponding to 2nd oscillation maximum.

Far detector

Far detectors

Table 6.15: Parameters of the ESSvSB far detector

Parameter	Value
Туре	Cylindrical water Cherenkov
Tank geometry	Standing cylinder
Number of tanks	2
Tank diameter	78 m
Tank height	78 m
Inner detector diameter	74 m
Inner detector height	74 m
Target water mass	318 kt per tank (636 kt total)
Inner detector PMT coverage	30%
Inner PMT diameter	20 inch
Number of inner PMTs	37,830 per tank (75,660 total)
Fiducial volume cut	2 m inwards from inner detector walls
Fiducial water mass	269 kt per tank (538 kt total)
Outer (veto) PMT size	8 inch
Number of outer (veto) PMTs	8226 per tank (16452)

Depth: ~ 1000 m

in-house

Neutrino energy from lepton momentum

Scatternig angle needed

$$E_{\nu}^{rec} = \frac{m_f^2 - (m_i')^2 - m_l^2 + 2m_i'E_l}{2(m_i' - E_l + p_l\cos\theta_l)} \tag{4}$$

where E_{ν}^{rec} is the reconstructed neutrino energy, m_i and m_f are the initial and final nucleon masses respectively, and $m'_i = m_i - E_b$, where $E_b = 27 \text{ MeV}$ is the binding energy of a nucleon inside ¹⁶O nuclei. E_l , p_l and θ_l are the reconstructed lepton energy, momentum, and angle with respect to the beam, respectively. The selec-

This formula assumes the QES scattering.

Event selection

- Every beam event in positive (negative) polarity is exclusively classified as:
 - $\nu_{_{e}}\,(\overline{\nu}_{_{e}})$ CC candidate
 - ν_{μ} ($\overline{\nu}_{\mu}$) CC candidate
 - ν NC ($\overline{\nu}$ NC) candidate (new)
 - not selected
- + $\nu_{_{\rm e}}$ / $\nu_{_{\rm u}}$ discrimination is based on
 - Michel electron detection
 - fiTQun PID
- NC rejection is based on
 - charge collected by PMTs used by fiTQun (noise not included)
 - pi0 detection

Discrimination variables

Number of subevents

- 1st subevent is the earliest detector trigger that happened within beam on window (BOW)
- 2nd and higher subevents are subsequent triggers within the BOW and a period after it

• fiTQun particle id (PID)

- maximum likelihood based PID
- Total collected charge at PMTs
 - filtered for noise by fiTQun

pi0 identification

- maximum likelihood based PID coupled with free fit for pi0 mass

Reconstructed momentum of electrons

- used to reject dark muons
 - · muon that is not detected but Michel electron is

Muon decay videos

ν_{e} selection

- Sequential rejection algorithm
 - Fiducial cut assuming charged lepton is an electron
 - Subevents > 1 \rightarrow not v_e
 - PID favours muon over electron \rightarrow not $\nu_{\rm e}$
 - Total used PMT charge < 1000 \rightarrow not v_{e}
 - PID strongly favours pi0 over electron (max(llh(pi0)) max(llh(e))) > 150) and fit pi0 mass between 55 MeV and 205 MeV → not v_e
 - charged lepton momentum assuming electron < 70 MeV \rightarrow not $\nu_{\rm e}$
 - it is a $\nu_{_{e}}$

$\nu_{_{\mu}}$ and NC selection

- ν_{μ} selection
 - selected as $\nu_{_{e}}$ \rightarrow not $\nu_{_{\mu}}$
 - fiducial cut (assuming muon as charged lepton)
 - subevents < 2 \rightarrow not ν_{μ}
 - it is $\nu_{_{\mu}}$
- NC selection
 - selected as $\nu_{_{e}} \text{ or } \nu_{_{\mu}} \rightarrow \text{ not NC}$
 - total used PMT charge between 5 and 800 $\,\rightarrow\,$ it is NC

Before we continue

- Fluxes in following plots are not the latest (CDR) version
 - still good enough for illustration
- Everything is normalized to 1 year (200 days) of operation
 - "expected events" means expected events in a year
- Event selection is the same for positive and negative polarity
 - all events in positive (negative) polarity are assumed to come from neutrinos (antineutrinos) by the selection algorithm
- Migration matrices are different for neutrinos and antineutrinos

v_{r} -like selection – true energy spectrum, positive polarity

True MC

v_{p} -like selection – true energy spectrum, negative polarity

True MC

e_nu_esel_40_negative_540

Data-like

v_{r} -like measured spectrum, positive polarity

e_nu_esel_reco_30_positive_540

v_{r} -like measured spectrum, negative polarity

e_nu_esel_reco_40_negative_540 4.5 N_{int} / bin / 200 days ae ae cc 40 negative e nu esel reco mu ae cc 40 negative e nu esel reco amu cc 40 negative e nu esel reco amu_nc_40_negative_e_nu_esel_reco 2.5 2 1.5 0.5 2.5 0^E 1.4 E_{reco} / GeV 0.2 0.4 0.6 0.8 1.2 1

e_nu_esel_reco_40_negative_360

e_nu_esel_reco_30_negative_540

Data-like

Charged lepton mom. resolutions

(a) Absolute momentum resolution

(b) Relative momentum resolution

Figure 6.59: Momentum reconstruction performance for a pure charged lepton flux. 1σ absolute resolution of reconstructed produced lepton momentum as a function of true lepton momentum is shown in Fig. 6.59a 1σ relative resolution of reconstructed produced lepton momentum as a function of true lepton momentum is shown in Fig. 6.59b

Neutrino energy resolution

(d) Relative resolution - all events.

Efficiency / rejection

Figure 6.69: Efficiency of the selection algorithm. Figure 6.69a shows the diagonal selection – the neutrinos that were selected correctly. Figure 6.69b shows off-diagonal efficiency – the neutrinos that were selected incorrectly. The red dashed line represents the fiducial volume cut. Off-diagonal efficiency is shown only for the most important cases, the physics reach determination is made using all possible selected/true combinations.

Can be further improved, but do we need it?

External background to FD

- Beam time window (BTW) time during which beam is on **and** time to wait for muon decay (~50 us)
 - time between two $\frac{1}{4}$ pusles is about 750 us
- Atmospheric muons entering the detector
 - completely negligible during BTW
 - 1000 m rock overhead
- Atmospheric neutrinos interacting in the detector and rock around it
 - interactions in the detector negligible during BTW
 - rock has not been studied, but I'm not worried (veto, short BTW)

- BTW rejection not possible
- we have low energy neutrino beam muon range in water < 2 m $\,$
 - not many of them will exit the rock and those that do will stop in veto water volume
 - also, we have veto
- No beam time window rejection possible for non-beam physics!

The future

- Create a full simulation framework
 - include full geometry (detector + rock)
 - needed to study neutrino interactions in the rock
 - implement multiple neutrino flux drivers in GENIE
 - needed to study different non-beam fluxes
- simulate Gd doping
- improve/replace WCSim
- better/faster reconstruction machine learning, ...
 - need to implement a "MC independent" reconstruction as a benchmark

Far detector studies

atmospheric neutrinos

- $\nu / \overline{\nu}$ components
- energy ~ 0.1–100 GeV
- spherical source use Honda 2-D fluxes
- rock muons must be studied too

atmospheric muons

- correlated time of arrival (muon bundles) needs full CORSIKA sumulation
- muon tomography of the mine

supernova neutrinos

- mostly $\overline{\nu}$, smaller ν component
- point source known scattering angle
- enregy ~ 0.5–100 MeV

OPERA, beam MC vertices, trigger, no beam rock muons

vertices xz opdy trig vertices_xz_opdy_trig 500 2112754 Entries Mean x 5.208 400 E Sec. Mean y 0.6267 1. A. A. RMS x 498.4 300 RMS y 220.9 1000 200 6460 0.12 100 توريزيان 0.1 -100 0.08 0.06 -200 F 0.04 -300 F 0.02 -400 -500 -1500 1500 -500 500 1000 -1000

OPERA, beam MC vertices, trigger, with beam rock muons

OPERA: $E_{\nu} \sim 15 GeV$ ESSnuSB: $E_{\nu} \sim 300 MeV$

OPERA, beam MC vertices, trigger, with beam rock muons

OPERA: $E_{\nu} \sim 15 GeV$ ESSnuSB: $E_{\nu} \sim 300 MeV$

Muon range scales with energy.

Beam rock muons negligible in ESSnuSB, atmospheric neutrino rock muons probably not.

Far detector studies

- diffuse supernova neutrinos
 - isotropic source
 - energy to be figured out
- solar neutrinos
 - direction known
 - energy ~0-20 MeV

- reactor neutrinos
 - antineutrinos
 - multi-point source
 - energy ~ 1.8-8 MeV
- geoneutrinos
 - antineutrinos
 - from below?
 - energy ~ 1.8-3 MeV

Conclusions

- Far detector optimized enough for ESSnuSB beam physics
- Need further work and improvements for nonbeam physics