

<u>Tsutomu Fukuda</u> (Institute for Advanced Research/F-lab. Nagoya Univ.) on behalf of the NINJA Collaboration

1st ESSNuSB+ WP5 in-person Workshop, Kalamata, 18th May. 2023

Short introduction

FUKUDA, Tsutomu (Nagoya U., Japan)

2003-2018(2022): OPERA experiment

- \rightarrow Discovery of v_t appearance (2015)
- Emulsion detector preparation
- Establishment of neutrino event analysis
- Hadron interaction study ightarrow BKG reduction of $u_{ au}$
- Development of new analysis methods for emulsion detector

2015-Current : NINJA experiment (Spokesperson)

- → Neutrino interaction study at J-PARC
- Research proposal
- Building the collaboration
- Demonstration of the experimental concept
- Physics Run start (2019 \sim)

What is emulsion?

Emulsion film production

Nuclear emulsion film is made at Nagoya U.

Automatic emulsion coating system at Nagoya U.

Emulsion film data taking

Neutrino events in emulsion

OPERA v_{τ} event

Merits using emulsion detector

- Neutrino-water interactions \leftarrow same target as the large water Cherenkov detector
- Low background for v_e measurement \leftarrow clear verification of sterile neutrino

The nuclear emulsion has all the essential elements for low energy neutrino study.

viking detector at ESSnuSB

1ton water emulsion detector

5-10°C for emulsion films.

Low energy e/µ separation in water ECC GEANT4 Need to be confirmed experimentally

- Total apparatus mass include cooling shelter and detector racks is ~8 ton.

How about π/μ separation?

In principle, π and μ can be separated by using Range-dE/dx information. But need to be confirmed by MC and experiment.

Using thick emulsion sheets instead of iron plates, π and μ is identified by image analysis at each stop point.

v cross-section measurement

11/22

GEANT4 (QGSP BERT physics list) (normalize : POT value & target mass)

Systematic uncertainties

To do

- 1. Detector simulation using GEANT4 to analyze PID.
- 2. Check MC PID works for neutrino interactions in ESSnuSB energy.
- 3. Full MC process of neutrino cross-section measurements.
- 4. Experimental verification of 1,2 and 3.
 - for 1, a test experiment by CERN?
 - for 2&3, a physics run in NINJA at J-PARC?

• The analysis of Detector Run using 60kg iron target was completed. In backward π production, significant discrepancy between data and simulation was found.

- The analysis of Physics Run using 75kg water target was going on.
- Second Physics Run using water target will be implemented this year.
- Large budget (1M€ for 5years:2023-2027) was obtained last month. So the discussion of new plan for next year and beyond is started.

NINJA Results of Detector Run(1)

- 4.0 x 10¹⁹ POT @ Detector run
- Target: 65kg iron $\rightarrow v$ -iron int.
- Momentum, emission angle and multiplicity of μ , π and p are measured for 183 CC events.

NINJA Results of Detector Run(2)

- 3.5 x 10²⁰ POT @ Detector run
- Target: 65kg iron $\rightarrow \overline{\nu}$ -iron int.
- Momentum, emission angle and multiplicity of μ , π and p are measured for 770 CC events.

Inclusive Cross-section measurement

The results agree well with the MC prediction

Results of Detector Run(2)'

Proton kinematics The results agree well with the MC prediction

NINJA

Pion kinematics Data of charged pion production (backward) is larger than the MC prediction.

NINJAD etected neutrino events in Physics Run

ECC – Emulsion Shifter – Scintillation Tracker – Baby MIND worked well and succeeded in μ ID and measuring their charge.

Typical Neutrino CC event

- The event pictures (number of protons) in ECC and the µ charge measured by Baby MIND are consistent.
 - To finalized data set, we are checking the muon connections and analysis in ECC, event by event carefully.

Snowmass2021 process at US

20/22

Welcome to Snow

6

The Snowmass Community Plann COVID-19 pandemic, resumed ful Community Summer Study Works https://snowmass21.org/annou individual frontiers can be found the activity by signing up to the re menu if you haven't already done The Particle Physics Community F of Particles and Fields (DPF) of the provides an opportunity for the e

document a scientific vision for th partners. Snowmass will define th identify promising opportunities t Snowmass here S "How to Snow Prioritization Panel, will take the s

Search

SNOWMASS NEUTRINO FRONTIER: NEUTRINO INTERACTION CROSS SECTIONS (NF06) TOPICAL GROUP REPORT

SUBMITTED TO THE PROCEEDINGS OF THE US COMMUNITY STUDY ON THE FUTURE OF PARTICLE PHYSICS (SNOWMASS 2021)

5.5	eALB/	Α	12
Neu	Jeutrino Scattering Measurements 13 1 Long Receling Functionant ND comphilities 1 Long Receling Functionant ND comphilities		
6.1	Long-I	Baseline Experiment ND capabilities	13
	6.1.1	T2K-ND	14
	6.1.2		15
	6.1.3		15
	6.1.4	HK-ND	16
6.2	Short-	Baseline Experiment ND capabilities	16
	6.2.1		16
	6.2.2	ICARUS (NuMI off-axis beamline)	17
	6.2.3	SBND	17
6.3	Dedica	ated neutrino scattering programs	18
	6.3.1	MINERvA	18
	6.3.2	ANNIE	18
	6.3.3	NINJA	18
	6.3.4	H/D bubble chambers	19
	6.3.5	Far-Forward Neutrinos at the LHC	19
	636		20
	637	Polarized targets	20

NINJA

20

Jun

[hep

2

2203.11298v

Future prospect : D₂O

21/22

There is a discussion to further understand v-nucleus interactions, the study of v-nucleon interactions is important.

Conceptual principle:

8p

8n

8p

8n

H₂O

 D_2O

 $(v - D_2 0) - (v - H_2 0) \rightarrow (v - n)$

D

FERMILAB-CONF-22-149-ND,LA-UR-21-31459

Neutrino Scattering Measurements on Hydrogen and Deuterium: A Snowmass White Paper

Luis Alvarez-Ruso¹, Joshua L. Barrow^{2,3}, Leo Bellantoni⁴, Minerba Betancourt⁴, Alan Bross⁴, Linda Cremones¹⁵, Kirsty Duffy⁶, Steven Dytman⁷, Laura Fields⁸, Tsutomu Fukuda⁹, Diego González-Díaz¹⁰, Mikhail Gorchtein¹¹, Richard J. Hill^{12,4}, Thomas Junk⁴, Dustin Keller¹³, Huey-Wen Lin¹⁴, Xianguo Lu¹⁵, Kendall Mahn¹⁴, Aaron S. Meyer^{16,17}, Tanaz Mohayai⁴, Jorge G. Morfín⁴, Joseph Owens¹⁸, Jonathan Paley⁴, Vishvas Pandey¹⁹, Gil Paz²⁰, Roberto Petti²¹, Ryan Plestid^{12,4}, Bryan Ramson⁴, Brooke Russell¹⁷, Federico Sanchez Nieto²², Oleksandr Tomalak^{12,4,23}, Callum Wilkinson¹⁷, and Clarence Wret²⁴

¹Instituto de Física Corpuscular (IFIC), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valencia (UV), E-46980, Valencia, Spain ²Massachusetts Institute of Technology, Cambridge, MA

arXiv:2203.11298 [hep-ex].

⁶ University of Oxford, Oxford, OX1 3RH, United Kingdom ⁷ University of Pittsburgh, Pittsburgh, PA 15260, USA ⁸ University of Notre Dame, Notre Dame, IN 46556, USA ⁹ IAR/Flab, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601,

a pan

Development of a bubble chamber is being considered in US.

In NINJA, by introducing a heavy water target, we are developing a method to study v-nucleon interactions by analyzing the subtraction between a heavy water events and a water events.

Actually, a heavy water ECC

was installed in T81.

J-PARC T8

leav

A v-heavy water interaction

(2021)

- Nuclear emulsion is 3D tracking detector with sub-micron spatial resolution. It allows us to analyze neutrino interactions on a variety of nucleus.
- We have been studying neutrino interactions around 1GeV through the NINJA experiment. It should be optimized to study neutrino interactions at even lower energies.
- In this talk, I have shown the items for consideration and the future direction of END emulsion detector (viking).
- Your comments or inputs is very welcome and we would like to discuss it!

