

The ATLAS/LHC Demokritos group research activities

Theodoros Geralis NCSR Demokritos 10/06/2022

OUTLINE

- The ATLAS New Small Wheel Muon Upgrade
 - sTGC Trigger/Detector
 - NSW Software development
 - Physics Analysis: Z mass
- Instrumentation Laboratory DAMA
 - Resistive Micromegas R&D
 - Picosec Micromegas
 - Real x-y microbulk micromegas
 - Micromegas and use of graphene

FTE Students meeting 12 June 2022, NCSR "DEMOKRITOS", Athens, Greece

NCSR Demokritos full member of ATLAS since Oct. 2017

Researchers

Georgios Fanourakis (Emeritus) Theodoros Geralis (Team representative) Georgios Stavropoulos Andreas Psallidas (New member)

Doctoral Students

Olga Zormpa

Master Thesis

Foteini Faidra Trantou Afroditi Machaira **Technician (Electronics)**

Yannis Kiskiras

- : gfan@inp.demokritos.gr
- :geral@inp.demokritos.gr
- : stavrop@inp.demokritos.gr
- : Andreas.Psallidas@cern.ch

Practical work at DAMA (2021)

Argiris Kerezis, Univ. of Ioannina Ilias Alexopoulos, Univ. of Athens

The ATLAS Experiment - Upgrade

- ATLAS General purpose detector
- Muon Small wheels: Between the End-cap Calorimeter and End-cap Toroid
- 10 m in diameter
- Consist of:
 - Cathode Strip Chambers (CSC)
 - Thin Gap Chambers (TGC)
 - Monitor Drift Tube (MDT)
- Coverage: 1.3 < | η | <2.7

NEW SMALL WHEELS Mechanical structure

12/06/2022

sTGC (mainly for triggering) & Micromegas (mainly for tracking) detectors, both providing tracking and triggering information, combined into a fully redundant NSW system!

Theo Geralis

Operation principle MMs and sTGC (NSW Technologies)

Micromegas – 2.1 Million Channels

MM strips for tracking, first hit for trigger -Strip pitch: 450 μm -Precision: ~ 100 μm/layer -Data rates: Up to 8 Gbps/plane 12/06/2022

New Small Wheels (NSW)

- Work at high background rates (n, γ) 20kHz/cm²
- Will provide online high angle resolution (σ_{θ} ~1mrad)
- Spatial resolution at 100 μm
- Significant reduction of fake triggers

sTGC - 330 k Channels

- sTGC wires/strips for tracking, strips/pads for trigger
 - Precision: ~ 100 μ m/layer
 - Data rates: up to 1.77 Gbps/plane

Wheel: 8 Small Sectors + 8 Large Sectors Wheel A completed in June 2021 Wheel C completed in October 2021 Huge Greek contribution

12/06/2022

NSW: Impact on Physics

- Toroid Magnetic field requires dense tracking → NSW
- Possibility for proper reconstruction to the IP and resolve pile-up events (up to 150 in HL-LHC)
- Reconstruction of $\mu P_T \sim 10 \text{ GeV}$
- Keep efficiency and acceptance very high > 90% at HL
- Trigger rates without NSW:
 P_T > 40 GeV → single µ- Trigger rate 60kHz
- Trigger rates with NSW:
 - $P_T > 20 \text{ GeV} \rightarrow \text{single } \mu\text{-} \text{Trigger rate } 20 \text{kHz}$
- Can keep lower P_T (>10GeV) subleading μ

Example: H→WW*→lvlv

A P_T cut at 40 GeV would suppress most of the signal

Higgs production by VBF: Lower cross section but distinct signature

High P_T (>100 GeV) μ require high precision and high efficiency tracking NSW: 16 layers, high efficiency in high occupancy Allow physics channels with high mass Z', W', Higgs boson A decaying to muons

Higgs coupling to Vector Bosons Via Higgs-strahlung: $pp \rightarrow WH$

WH→µvbb

Trigger on leptons from W decays

Muon Software Coordinator (October 2021) (2 years term): George Stavropoulos - It refers to all muon detectors in ATLAS.

sTGC Trigger Commissioning Coordinator (January 2021): Theo Geralis

sTGC Trigger Commissioning in B191 and in ATLAS: Olga Zormpa Key person for the Sectors - sTGC Trigger Commissioning Olga got a Doctoral Studentship position at CERN

Physics Analysis with proton-proton collissions at the LHC

Technical work: Yannis Kiskiras Key person on Technical matters at the sTGC integration site.

LVD6R REPEATERS COMMISSIONING

LVD6R production: Full production completed (PRISMA SA) **1st Batch:** 70 LVD6Rs produced by middle of November 2019 **2nd Batch:** 70 LVD6Rs produced by end of February 2020

Shielding boxes: All 70 boxes built in Greece (Rentron) LVD6R production completed: Wheel A (Feb. 2020) + Wheel C (Oct. 2020)

Theo Geralis

Integration of Sectors to form the Wheels

Theo Geralis

12/06/2022

THEO GEIGIIS

NSW Triggering with sTGC

 $\Delta \theta$ = deviation from infinite momentum track angle

Combine BW + NSW: reduce fake rate

Pad Trigger: 3 / 4 AND 3 / 4 Coincidence Select up to 4 Candidates (BandID, PhiID)

Pad request: sTDS to Router to TP Send Strips info for selected Bands **Trigger Processor**: Define centroid of Strips charge per layer, compute R, $\Delta\theta$. Phi-ID is defined by the pads

3 out of 4 to cover: 1) Detector inefficiencies 2) Tracks crossing only 3 pads To watch: effect of high background rates (γ, n) and pile-up hits.

Theo Geralis On going studies: Gif++ data, Simulation

12/06/2022

sTGC Trigger Slice system in B180

Build by the Demokritos group (Feb. 2020)

Purpose: Build complete autonomous Trigger Slice → 1 Sector wedge

12 sFEB + 12 pFEB Rim-Crate

- 1 Pad Trigger
- 1 RimL1DDC
- 4 Routers
- 8 L1DDCs
- 2 LVD6Rs + 10 SRL1Rs Trigger Processor
- Felix

Connections as on the wheel for proper timings

Proper water cooling for all the components (I.Kiskiras) The whole setup is hosted in two racks

→ UNIQUE: ALL THE TRIGGER GROUP USED THIS SYSTEM REMOTELY INTENSE USE DURING LOCKDOWN

ATLAS Software developments

G. Stavropoulos: ATLAS Muon Software Coordinator

The ATLAS Muon Software

>40 people (~11 FTEs) from > 20 Institutes.

Its goals:

To design, develop and maintain the ATLAS muon offline software all the way from DAQ byte-stream reading to muon reconstruction and identification.

In a Multi-Thread C++/OO and Python environment.

We will need one Master student willing to continue for A PhD for Software developments and Physics Analysis

Z mass Measurement

Goal: High precision Zmass measurement Current precision from LEP

 M_Z = 91187.6 +-2.1MeV Dominated by LEP energy measurement Common systematic for all LEP exp.

Z mass: High pull in the EW global fit

Steps:

- Muon Calibration
- Background estimation
 - J/psi
 - Y (?)
 - Z

Our Part:

- J/psi background
 - Drell Yan
 - Semi-leptonic decays
 - Fakes

Olga Zormpa PhD subject

DAMA instrumentation RD

DAMA INFRASTRUCTURE

•THREE FULLY EQUIPPED TEST BENCHES FOR STUDYING MPGDs •Electronics Rack, Gas distribution, Workstation, Osciloscope

•NEW GAS MIXER and distribution of premixed gases

(K. Damanakis)
•Mixing 3 gases
•Operate at pressure range 100 mbar - 2 bar

•ELECTRONICS AND DAQ SYSTEMS

•VME Data Acquisition (Controller, CRAMS, sequencer, ADC, Gate gen. •SRS - Scalable Readout System (APV FE, 2000 channels readout) •FEMINOS readout for TPC mode

•Electronics: Racks (1 VME and 4 NIM crates), NIM units

(Multifunction NIM modules, Amplifiers, Discrim., HV PS, LV PS,

Pulse generators, NIM/TTL/NIM conv, etc), MCAs (2), Preamps •DESIGN PACKAGES

•COSMIC STAND (Olga Zormpa, George Stavropoulos)

•Scintillator based cosmic veto for triggering on muons •Used for studies of the Micromegas

•CLEAN ROOM (12 m² – two rooms Class 10,000 and Class 100,000) •Microscope

Examples of Students works

This is our ambition

- 1) Two-gas phase detector separated by a Graphene layer
- 2) Exploit differences in gas properties to improve performance
- Should have high electron transparency (test to be performed)
- It may be used to eliminate ion backflow

We have placed a graphene

surface of 1 x 1 cm²

ALTI : Double VME board **Upgrade** to the current timing, trigger and control (TTC) system

Primary function: Interfaces the Level-1 **Central Trigger Processor** and the **TTC network** to the front-end electronics of each of the ATLAS sub-detector

#-							Currently provides an artificially generated					
#					M							
#					u		pulse pattern with the TTC information					
#					1							
#					t							
#	i					and the Bunch Crossing clock at 40 MHz						
#					р		0					
#					1		for data avaduranization					
#	CCC				i		for data synchronization.					
#	BRRR	Т	BBBB	TTT	С							
#0	UEEE	Т	GGGG	TTTL	i							
#R	SQQQ	Y	0000	RRR1	t							
#B	Y210	P	3210	321A	У							
#-												
1	0000	0x00	0000	0000	40	#	orbit signal					
0	0000	0x00	0000	0000	11							
0	0000	0x00	0000	0000	1	#	BCR signal					
0	0000	0x00	0000	0000	99							
0	0000	0x00	0100	0000	1	#	test pulse signal					
0	0000	0x00	0000	0000	69							
0	0000	0x00	0000	0001	1	#	L1A signal					
0	0000	0x00	0000	0000	334Z	#	LHC Orbit of 3564 BC -> 11.245 kHz					
1	0000	0x00	0000	0000	40							
0	0000	0x00	0000	0000	11							

HEEL

- Irradiation with γ (¹³⁷Cs 662 keV) ٠ at LHC expected fluxes
- Aim: 1) measure µ efficiencies • under irradiation

2) Measure fake rates

250 Radius (cm) Pad Efficiency vs Radius (50ns) 4_scinti

300

350

400

200

100

150

Gamma Irradiation Facility

Gas Mixer System in ELEA

Designed by T. Geralis, developed by Kostas Damanakis, Athanasia Papaioannou.

Goals

- Mixing three different gases and filling the Micromegas Detector with the gas mixture
- Choosing to mix the gases with the mixing system in order to minimize the imperfections that could possibly exist in industrially developed gases
- Study and improve the efficiency of the MMs under different gas mixtures

Cosmic Stand

Eva Eleftheriou, Stathis Logothetis (Practice students), Olga Zormpa (Masters student)

Goal: Design, set up and installation of a cosmic stand. **Purpose:** Reconstruction of muon tracks. Test and calibration of detectors (mainly MicroMeGaS)

Monitoring of DAMA lab environmental variables

<u>Practice Students</u>: Alexopoulos I., Giannakopoulos D., Remoundou Th. <u>Masters Student</u>: Kannelos N. <u>Technician</u>: Kiskiras I.

4 Arduino-based modules designed and constructed. PC communication via Bluetooth (3 modules) and USB (1 module) Commercial sw (WinCC) used for monitoring.

-Arduino Mega-				- Arduino 62			
Temperature	Humidity Humidity	Pressure Pressure	Archiving Temperature	Temperature	Humidity Humidity	Pressure Pressure	Archiving Temperatur
25.87 °C	46.89 %	988.09 hPa	Archiving Humidity Archiving	27.4 °C	46.1 %	988.35 hPa	Archiving Humidity Archiving
ŀ,		ŀr.	Pressure	E.			Pressure
ON OFF	ON OFF	ON OFF					
	UNALL	OFF ALL					
-Arduino_AE				_ Arduino_AD			
emperature	Humidity Humidity	Pressure	Archiving Temperature	Temperature Femperature	Humidity	Pressure	Archiving Temperatur
29.6 °C	37.5 %	988.09 hPa	Archiving Humidity	27.2 °C	44.9 %	987.54 hPa	Archiving Humidity Archiving
ŀ,	<u></u>	ŀr.	Pressure	E.	2	2	Pressure
	ON OFF	ON OFF		ON OFF	ON OFF	ON OFF	
ON OFF							

Work by the Practical students: Stamatis Tzanos, Vasilis Blanas

Build 2 Gas Flow Controllers

Work on the "Real x-y Segmented Microbulk": First real x-y with 700 µm strip pitch

Working in the Clean Room

Preparing the Cloud Chamber For Researcher's Night

ATLAS

INPP/ATLAS Group has undertaken important responsibilities within NSW project:

- Plays leading role on the Muon System software
- Plays leading role in the commissioning of the sTGCs Trigger
- Played important role in the integration of the sTGC detectors
- Plans (2022):
 - Commissioning of the sTGC Trigger in ATLAS
 - Development within the Trigger
 - Take part in Cosmics/testbeam/LHC NSW data analysis
 - Start Physics Analysis with the final detector and LHC collisions

ATLAS PLAN: Integration of the NSW in the rest of ATLAS (2022)

One Master student planning to continue for PhD

Software developments and Physics with pp collisions at the LHC

Rich program of R&D on instrumentation

- Resistive Micromegas R&D
- Picosec micromegas
- Real x-y microbulk micromegas
- Micromegas and use of graphene
- One Master student planning to continue for PhD

Student planning to continue for PhD starting January 2023 Instrumentation (nanomaterials) and LHC Physics

Backup

NSW Alignment in Reconstruction

Coordinated by G. Stavropoulos anf work by G.S., S. Angelidakis, Ch. Kitsaki

Realistic detector description: Set of parameters

- *as-built parameters*: construction sites measurements translated to discrepancies w.r.t the nominal (according to design) chamber
- *Alignment of Stations:* 6 time-dependent parameters meant to describe deviations w.r.t nominal positions
- *Deformations:* 11 time-dependent parameters meant to describe the deformation effects.

Implemented and merged into the official ATLAS s/w.

Real x-y Segmented Mesh Microbulk Micromegas

RD51 Common Fund Project (32.5 kCHF)

Collaborating groups:

NCSR Demokritos (Leading Institute) IRFU Saclay, Univ. of Zaragoza, CERN

- 1) Real x-y structure
- 2) Mass minimization
- 3) Production Simplification

Ideal for:

 Rare searches (axion, dark matter) Background → ~ 10⁻⁷ cnts/keV/cm²/s
 Neutron Beam profiler (nTOF) Very low material Budget:

Real x-y microbulk with strip pitch 700 μm Operation in TPC mode for tracking

Strip wave form → x,y,z coordinates Landau distribution from Cosmic muons

M. Diakaki et al., "Development of a novel segmented mesh MicroMegas detector for neutron beam profiling", NIMA 903(2018) 46-55.

Theo Geralis

The Picosecond Micromegas George Fanourakis

Timing detectors at High Luminosity Colliders

0.6

0.4 0.2

-0.2

-04

Challenges at future colliders:

- High luminosity (200 pile up events within 150 ps RMS predicted for HL-LHC)
- High radiation environment

Precision timing of ~25 ps can reduce pile up effects by improving vertex reconstruction with TOF information

Build mini calorimeter with 6 res. uM and a total of ~20 X_{0} . Test with electrons

Electron Beam: 30, 50, 70, 90, 130, 200 GeV

Simulated Events (Geant4): Exact geometry, 90 GeV shower

PROOVEN: Sparkless operation at high rates Linear response at high rates ~100 MHz/cm² Large surface detectors, lower cost Good candidate technology for future HCALs

Publications

- 1) T. Geralis et al., 'Development of resistive anode Micromegas for sampling calorimetry', Proceedings of the MPGD2015 conference in EPJ Web of Conf., 174, 01017 (2018)
- 2) M. Chefdeville . Development of Micromegas detectors with resistive anode pads. NIM A 1003(2021) 165268

R&D Activities

Resistive Micromegas for High Rate Calormitetry SCREAM: Sampling Calorimetry with Resistive Anode MPGDs INPP, LAPP Annecy, CEA Saclay

Resistive layers prevent streamers to develop to sparks by quenching it at an early stage

R: Resistance to ground

C: Capacitance between resistive coating and ground: f(cascade extend (~100 μm)) ~f(gas, drift length , HV, materials)

RC: gives typical time of the charge evacuation High charge deposition deforms locally the E field \rightarrow lower Gain \rightarrow Quench spark \rightarrow loss of linearity

τ : time of cascade development ~ 10 ns RC > τ → Spark quenching RC ~ τ → Spark develops Our study: Vary RC (effectively vary R) and and study response linearity and discharge rate.

Charge evacuation:

- Sideways, horizontal evacuation of charge not adequate for large surfaces and high rates due to development of steady state charges
- Individual surface resistivity for every pad with buried resistor to ground, limits cross talk and cumulative effects of large surfaces (proposed by Rui De Oliveira)

TZ/UP/ZUZZ

i neo Geraiis