

Process quality control (PQC) of silicon sensors for the Phase-2 upgrade of the CMS Tracker

P. Assiouras, I. Kazas, A. Kyriakis, D. Loukas

National Center of Scientific Research Demokritos Institute of Nuclear and Particle Physics Detector Instrumentation Laboratory

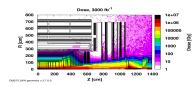
HEP 2021

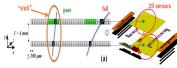
1/13

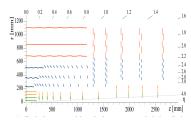
Introduction

- Silicon sessors before they are installed in the high energy experiments must have a substantial quality, in order to cope with the higher luminosity of HL-LHC.
- CMS has developed a quality assurance plan to make sure that all the components meet the specifications and to monitor the production procedure of the sensors.
- Process quality control is contacted to deticated test structures produced in the same wafer as the silicon sensors that will be used in the experiment.
- Together with the Sensor Quality control consist of the two main procedures of the quality assurance of the sensors.
- The phase 2 upgrade of CMS Tracker
- Sensor and process quality control
- 3 Examples of experimental measurments

From LHC to HL-LHC


- Phase-I: (2018-2020), Double the designed Luminosity: $2 \cdot 10^{34} cm^{-2} s^{-1}$, Integrated Luminosity: $300 \text{ } fb^{-1}$ at Run 3.
- \bullet Phase-II: (2024-2026) , Luminosity: 5 \cdot $10^{34} cm^{-2} s^{-1}$, 300 fb^{-1} per year 3000 fb^{-1} for 10 years of operation




Figure: HL-LHC upgrade schedule.

Phase-2 upgrade of CMS Tracker

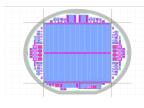
- Due to high number of pile-up events and radiation levels a major upgrade of the CMS experiment is needed. Three of the most important requirements for the CMS Tracker are:
 - Radiation Tolerance. ⇒ Flip from p-on-n to n-on-p, Oxygen-rich substrates
 - High Pile up ⇒ Increase granularity.
 - Increased number of sensors
 - Increased segmentation to each sensor.
 - Improve CMS trigger system ⇒ Contribution of CMS Tracker at Level-1 Trigger.
 - Discrimination of low p_T events at module level at bunch crossing rate.
 - Reduce data volume.
 - Keeping the most interesting events for physics studies.
- Outer Tracker:
 - 2S modules Two very closed spaced strip sensors
 - PS modules Two very closed sensors. One with macro-pixels (PS-p) and one with strips (PS-s)
- Inner Tracker:
 - Pixel modules Pixel very thin detectors with two pixel geometries (50x50),(100x25)

4/13

Outer Tracker sensors

Outer Tracker will encompass $200 m^2$ Consisting of 24000 sensors

Two different modules with three different sensors


- 2S sensors
 - 6" wafers
 - n-on-p sensors
 - Float-zone technique Active thickness 290
 - um
 - · AC coupled with Poly-silicon biased

PS-s sensors

- 6" wafers
- n-on-p sensors
- Float-zone technique
- Active thickness 290 um
- · AC coupled with Poly-silicon biased

PS-p sensors

- 6" wafers
- n-on-p sensors
- Float-zone technique Active thickness 290
- um DC coupled
- Biased with punch-through structures

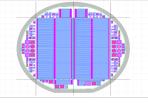
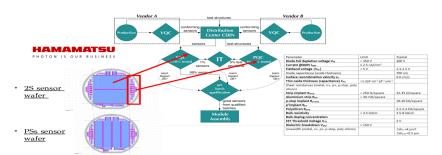



Figure: Design of the 2S, PS-s and PS-p wafers 1

Sensor and process quality control

• Sensor quality control

- Direct measurement of subset of sensors which will be made into modules
- Directly verify that HPK is producing sensors within our specs
- Takes a lot of time. Less samples in the same batch

Irradiation tests

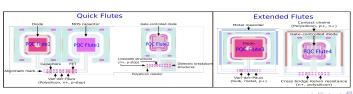
- Irradiate mini sensors and test structures from same wafer as diced sensors
- Verify that the silicon will behave within spec after expected radiation doses of HL-LHC

Process quality control

- Measurement of test structures located on the same wafer constructed with the same properties as the main sensors, utilizing the empty space on the edges of the wafers.
- Verify silicon quality without the need to handle sensors
- Takes less time. More samples in the same batch can be measured

QA centers

- SQC centers
 - Brown
 - Delhi
 - Hephy
 - KIT
 - NCP
 - Rochecter

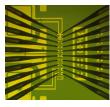

- PQC centers
 - Brown
 - Demokritos
 - Hephy
 - Perugia

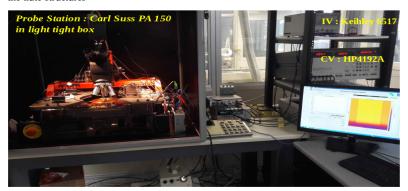
- IT centers
 - KIT
 - Brown

		20	317	2018		2019			2020			2021			ĺ	2022			2023				2024			2025			2026		
TRACKING SYSTEM TIMELINE	Q	Q2	Q3 Q4	Q1 Q	2 Q3 Q4	Q1	Q2 G	9 Q4	Q1	Q2	Q3 G	14	Q1 (22 Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2 Q	3 Q4	Q1	Q2 I	23 04	Q1	Q2	Q3	Q4	Q1	Q2
_			TOR Submin	aion						T			Т									Т				_					
OUTER TRACKER								•	♦ OT EDR						Т											OT Installation 💠			$\overline{}$	_	
Construction D	Construction Design				Prototyping				Pre-pro				duction				Production														
OT Sensors	т				81	3 ♦ 814 ♦				80			o •				81.6 ◆			817 ◆											
OT FE ASIOs	Ш	FE	2 ♦ FE3	٠	FE.4	٠		FE.5 ◆		FE.6◆		П				П										Т					
OT MePSA			MaPs	3A.3 +				IP8A,4 ◆					MIPSA.	5 +			P8A.6 •				iP8A7 ◆										
OT Hybrids							HY.13 •		Hn:	2		10	Y.55 •	+ HV.9	HY.13	٠.	HY.18		Hers.	19 .	• HY 20										
OT Modules				◆ MO.			a +	0 ♦ MO.5 ♦ M		MO	A0.6 ◆ ◆ NO.7				W0.8 ◆			MO.9 ◆		◆ NO	10										
OT Structures							ME.3 •	ME7 ◆		ME.B				MEA ◆					ME	.5 +	♦ ME.0		• ME.B								
OT BE Electronics				8E.1 ◆			86	7 💠	8	E2 +	◆ 8E.8				8E.6	٠	8E.3	٠	BE.10	٠	BE.4 ◆		8	E.5 +	BE.11 ◆						
Integration	Т											Т									IN.1 •				N2 ◆	IN.3 4		Corre	missioni	ng	
INNER TRACKER	Т											Т	+	ITEDR		Г										Т		п	Installa	ion 🕈	
Construction D	lesign					Ш	P			rototyping			Pre-production			ion	en			Production											
IT Sensors	Т						92	٠	834	• sı	4.	Т		9.5	•	П		34 +			SL7 •					Т				Т	
IT ROC		FE.3	٠			п	L4 •						FE	•																	
IT Modules							MO.1 •						MD2	•			MO	o ◆		MD.4	٠	M0.5 ◆	NA.	0.6 💠							
IT PE Electronics							EL.	1, EL4 +	П		DLS •	Ш		1.2 • •	EL6			EL 7 💠				EL.5 💠									
IT Structures													ME3				ME.4	•			ME	5 💠									
IT BE Electronics						85.5	٠			t	es •	BE	.1 💠	•	56.7			BE 2 ◆	+ 88	8.3	BE.3 •		+88.		E4 +	BE	.10 💠				
Integration												\perp										N.2 💠					N.3 +		Comm	is sionis	9
COOLING	Т	CO.2	٠			CO.3 4	•		٠	cos	◆ CO.4					•	00.7				cc	a •				٠	CO.9				
OTHER SYSTEMS										06.4			06.1 •			П				05.5 ♦ ♦ 06.2			• 0	◆ 05.6			◆ 08.3, 087				

PQC mesurments: Flute structures

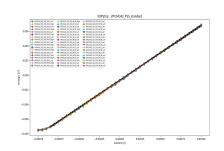
- Test structures that are arranged around an array of 20 contact pads, called "flute"
 - Automated measurements by using a 20 needle probe card
- Each Half Moon contain 2 sets of 4 flutes in each side. They are seperated in
 - Quick Flutes (Quick evaluation of most important parameters. Takes about 30 min)
 - Flute 1: MOS, VDP (P-stop, n+, Poly), FET
 - Flute 2: GCD, Rpoly, Diel Breakdown, Linewidth(n+, p-stop)
 - Extended Flutes (Providing additional parameters, Performed in a smaller number of wafers. Takes about 50 min)
 - Flute 3: Diodes Half, VDP(Bulk, Edge(p+), Metal(Al))
 - Flute 4: GCD05, CBKR(n+, Poly)
 - Additional flute and standard test structures to be contacted with needles.

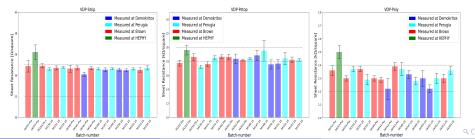



8/13

Experimental setup

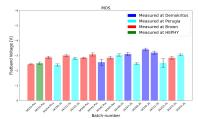
- Electrical characterization setup consisting of:
 - Probe Station: Karl Suss PA 150
 - CV: HP4092A
 - IV: Keithley 6517A
 - IV: Keithley 2410A
 - The whole setup is controlled witha a LabView program
 - A probe card and switching matrix is used for automatization of the measurments on the flute structures

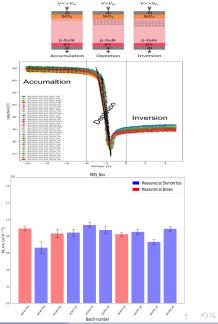



Example of measurements: Van der Pauw cross structures

- Van Der Pauw (VDP) test structures are used to measure the resistance of thin films (Al, n+, p-stop, Edge)
- A current source is applied in two contacts.
 The voltage difference is measured to the other two contacts

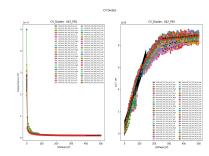
$$R_{sh} = \frac{\pi}{\ln(2)} \frac{V}{I}$$

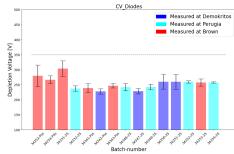



Example of measurements: MOS capacitors

• MOS capacitor is the most useful device in the study of semiconductor surfaces and interfaces.

- Parameters measured with this device:
 - \bullet Flatband voltage $V_{fb} = \phi_{Al} \phi_{Si}$
 - Ideal case: $V_{fb} = 0$ Non ideal: $V_{fb} \propto N_{ox}$
 - Fixed oxide charge concentration N_{ox}
 - Oxide capacitance C_{ox}
 - Oxide thickness $t_{ox} = C_{ox}/\varepsilon A$




Example of measurements: Diodes

 Diodes are used in order to study of the bulk properties. The standard type of measurements are IV and CV measurements:

- CV Measurments:
 - ullet Full depletion Voltage V_{fd}
 - Doping concentration N_{sub}
 - Bulk resistivity $\rho > 3.5k\Omega cm$
- IV Measurments:
 - Current value at 600V ($< 2.5nA/mm^3$)
 - Check for breadown voltage

Conclusion

- The Process Quality Control (PQC) aims to monitor the stability of the sensor fabrication process.
- We are moving into a mass production period with all the PQC centers ready for this phase.
- All the batches that were tested so far were qualified as qood
 - Uniform measurements between different batches
 - Good agreement between the PQC centers