ISOLDE @ CERN

Anastasios Lagoyannis Tandem Accelerator Laboratory Institute of Nuclear and Particle Physics N.C.S.R. "Demokritos"

Why RIB's ?

Production of RIB

Projectile Fragmentation

- Time limit ~1 µs
- High luminosity
- High energy beam >100 MeV/u
- No chemistry

Time limit ~10-100 ms

- High beam intensity close to stability
- Better beam quality (purity, optics ...)
- Nuclei produced at rest

CERN

ISOLDE

Resonance Ionization Laser Ion Source

REXTRAP	Penning trap, slowing down ions, accumulation and bunching	
REXEBIS	Electron Beam Ion Source Charge breeding	
Mass separator	A/q < 4.5	

ISOLDE

Yields

Physics case: ⁶⁸Ni

Is the nature of the N=40 subshell closure understood?

Physics case: ⁶⁸Ni

Study of the single particle character of the neutron rich Ni isotopes Physics case: ${}^{2}H({}^{66}NI,p){}^{67}Ni$, Q = 3.583 MeV

- ⁶⁷Ni^g one hole state of the ⁶⁸Ni
- g factor exp. value smaller by a factor of 2 than the expected for $1g_{9/2}$
- Unambiguous determination of the spin and parities of the the first excited states - one more state v_{3/2} not yet observed
- Single particle character of the states of ⁶⁷Ni (relative SF's)
- A good starting point as to determine the single particle character of the Ni isotopic chain single particle systematics

Experimental Setup

- "Thick" CD₂ target measurement (1mgr/cm²)
- Spectroscopic information for the excited states up to 3 MeV.
- Φ Coincidences with γ
- "Thin" CD₂ target measurement (100 µgr/cm²)
 Spectroscopic information for the ground and the second excited state.
- Singles: only backward angles

Miniball

Silicon Barrel

Detector	Angles	Thickness	Segmentation
Forw. CD (ΔE)	8-30	300 µm	16 annular x 24 radial
Forw. CD (E)	8-30	1.5 mm	no
Forw. Barrel (ΔE)	30-75	140 µm	16 stripes ⊥ beam + ch. Div resistive layer
Forw. Barrel (PAD)	30-75	1 mm	no
Back. Barrel	104-152	500 µm	16 stripes ⊥ beam + ch. Div resistive layer
Back. CD	152-172	500 µm	16 annular x 24 radial

Particle detector: 464 channels

A. Lagoyannis Institute of Nuclear and Particle Physics NCSR "Demokritos"

HIE - ISOLDE

HIE - ISOLDE

Increase in REX energy from 3 to 10 MeV/u (first step an increase to 5.5 MeV/u)

Increase proton intensity 2 \rightarrow 6 μA (LINAC4, PSB upgrade) - target and front-end upgrade

RFQ cooler, REX-TRAP, REX-EBIS REX-ECR upgrades

Super-HRS for isobaric separation RILIS upgrade & LIST

A. Lagoyannis Institute of Nuclear and Particle Physics Annual NuSTAR meeting 2008 NCSR "Demokritos"