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Dirac Sea and the Vacuum

Dirac suggested that the ”vacuum” is the state in which all electron  
states of negative energy E ≤ −mc2 are occupied and all states of positive 
energy E ≥ mc2 are empty.  

  
Only departure from the vacuum distribution will have influence on the 
electromagnetic current.



Vacuum Fluctuations 

Lamb Shift
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Integrating the expression one can get
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The energy density of the vacuum will take the form
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with its minimum outside of the origin
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13 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

14 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].

15 Schwinger approach

Diamagnetic materials are repelled by magnetic fields and form induced magnetic fields in the
direction opposite to that of the applied magnetic field. An applied magnetic field creates an induced
magnetic field in them in the opposite direction,

Paramagnetism is a form of magnetism whereby certain materials are weakly attracted by an
externally applied magnetic field, and form internal, induced magnetic fields in the direction of the
applied magnetic field.
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 Vacuum Polarisation 



Arnold Sommerfeld Werner Heisenberg

Bohr thought that the large transmission coefficient that Klein found was 
because the Klein potential step was so abrupt.  

He discussed this with Heisenberg and Sommerfeld and as a result 
Sommerfeld’s assistant Sauter in Munich calculated the transmission 
coefficient for a potential of the form  

                                             V= e E x   

Sauter Solution in Electric Field  
and Pair Creation



Sauter Solution in Electric Field and Pair Creation

The solution in constant electric field was of the following form where
› =

Ú
1

~c eE
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The Dirac equation reduces to the following two equations
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and the solution can be expressed in terms of the hyper-geometrical functions. The integral repre-
sentation which was found by Sauter is
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The integrals are to be taken along a path coming from +Œ circulating around both branch point
singularities +i/2 and ≠i/2 and returning to +Œ as it is shown on Fig.2. One can verify that
f1 = gú

2 and f2 = gú
1 and that this solution satisfy the Dirac equations (3.9) and fulfil the following

boundary conditions f1(0) = g2(0) = 0 and f2(0) = g1(0) = 1. The f1, g2 are symmetric and f2, g1
are antisymmetric functions of › = 0. Absolute value of › is necessary to ensure the symmetries of
the functions f and g and the continuity of the functions at the point › = 0. For › < ≠Ÿ and › > Ÿ
the wave function oscillate with varying frequency and amplitude, these are the regions I and III in
Fig.3. In the intermediate region II, its absolute value falls exponentially from the points › = ±Ÿ to
the value of order 1 or 0 at › = 0. For the electron which has small momenta in y and z directions
the dimensionless parameter Ÿ as it follow form (3.10) is

Ÿ =

Û
m2c3

e~
1
E

=
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Ec

E
, where we define the critical field Ec = m2c3

e~ ≥ 1016 V olt/cm (3.15)

and for the fields which are much smaller than the critical value Ec = 1016 Volt/cm the Ÿ is much
larger than one, Ÿ Ø 1ú and the decay of the wave functions towards the point › = 0 is exponential

P ≥ e≠fi m2c3
e~E . (3.16)

úIt should be noted that this exponential decay of functions towards the point › = 0 is due to the particular choice
of integration path on Fig.2 which defines the solution. If one use an alternative integration path one would obtain
an exponential increase of the functions towards the zero point › = 0. Such integration paths is given by a loop
that comes as in Fig.2 from the positive-real-infinite, but surrounded only one of the two branch points. Therefore,
a suitable linear combination of these solutions gives the expected increase. The dotted curve in Fig.3 is intended to
schematically indicate this possibility.
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Figure 2: The integration path in the integrals (3.11) .

He discussed this with Heisenberg and Sommerfeld and as a result Sommerfeld’s assistant Sauter [4]
in Munich calculated the transmission coe�cient for a potential of the form

V = 0, x < 0, V = eEx, 0 < x < L, V0 = eEL, x > L (2.4)

representing a constant electric field E in a finite space region L. After solving the Dirac equation
in terms of integral representation of the appropriate hypergeometric functions, Sauter obtained the
expression for the reflection and transmission coe�cients R and T in the case of a weak electric field
E

R ≥ 1, T = e≠fi m2c3
e~E (2.5)

showing the exponentially-suppressed tunnelling typical to the quantum mechanical phenomena.
Bohr conjectured that the Klein result would only be reproduced if the Sauter field were so strong
that the potential di�erence V0 > 2m would be attained at distances of the order of the Compton
wavelength of the electron, that is to say that the electric field strength eE > m2. And indeed in the
case of strong electric field eE ≥ m2 the coe�cients R and T where reduce to the Klein’s values. The
result shows explicitly that Bohr’s conjecture was correct: in order to violate the rule that tunnelling
in quantum mechanics is exponentially suppressed one should generate strong electric fields.

The next major contribution to the subject came ten years later. Hund [?] looked again at the
Klein step potential, but from the viewpoint of quantum field theory, not just the one particle Dirac
equation. Hund found that provided V0 = eEL > 2m, then a non-zero constant electric current J is
induced given by an integral over the transmission coe�cient T (E) with respect to energy E

< 0|J |0 >=
⁄

m<E<V0≠m
T (E)dE (2.6)

The current had to be interpreted as spontaneous production out of the vacuum of pairs of oppositely
charged particles. Spontaneous pair production occurs at a constant rate and the time-independent
reflection and transmission coe�cients incorporate this process.

3 Sauter Solution of the Dirac Equation in Constant Electric Field E

In the constant background electric field which is parallel to the x-axis the motion of the electrons
is free in y and z directions and one can search the solution in the following form [4]
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Sauter Solution in Electric Field and Pair Creation

Figure 3: In the absence of the background fields the ground state is realised in the configuration
when all electron states of negative energy E Æ ≠mc2 are occupied and all states of positive energy
E Ø mc2 are empty, as it can be seen on the l.h.s. picture. In the presence of only a magnetic field,
the stationary states of the electrons can be divided into those of negative and positive energy. Hence
the vacuum state can be defined in the same way as in the case of the absence of the background
field. The situation is di�erent in the case of electric field. In this case the potential energy grows
linearly in one space direction and the energy spectrum spans all energy values from ≠Œ to +Œ.
Hence a classification of energy eigenvalues into positive and negative is not unique. This di�culty
is related to the fact that the electric field can create the pairs of positrons and electrons. The
exact analysis of this problem was performed by Sauter. The calculations of Sauter shown that
the eigenfunction associated with the eigenvalue E, is large only in the regions I and III on the
r.h.s. picture and exponentially decreases in the region II. Therefore, a wave function, which was
large initially in the region III will stay so and be small in the region I because the transmission
coe�cient through the region II calculated by Sauter has an exponential suppression. Thus in case
when E π Ec the wave packet which is large in the region III will stay so and will remains small,
of the order e≠fiEc/E , in region I. Conversely, there are solutions which are large in region I and
are small in the region III. After that one can characterise the vacuum state as a configuration
in which all electron states have being occupied whose eigenfunctions are large only in region III,
while the others are unoccupied. The energy density at › = 0 is calculated from the di�erences of
these electron energies. By switching o� the electric field adiabatically, the so characterised vacuum
state will goes over into the state of the field-free space, in which only the negative-energy electron
states are occupied.
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Similar phenomena is a black hole  Hawking radiation
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Similar phenomena is Black hole Hawking radiation
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4 Euler E�ective Lagrangian

5 Heisenberg Euler E�ective Lagrangian

”The fact that electromagnetic radiation can be transformed into electron-positron pairs and vice
versa leads to fundamentally new features in quantum electrodynamics. One of the most important
consequences is that, even in the vacuum, the Maxwell equation have to be exchanged by more
complicated formulas. In general, it will be not possible to separate processes in the vacuum from
those involving electron-positron pairs since electromagnetic fields can create pairs if they are strong
enough. Even if they are not strong enough to create pairs they will, due to the virtual possibility
of creating pairs, polarise the vacuum and therefore change the Maxwell equations” [7].

When the external electric Ę and magnetic H̨ fields are applied to the vacuum they influence
the behaviour of the virtual electron-positron pairs and can therefore induce a nonzero dielectric
polarisation P̨vac and magnetisation M̨vac of the vacuum. The electric displacement D̨ and magnetic
induction B̨ induced in the vacuum were suggested to be written as a sum

D̨ = Ę + 4fiP̨vac (5.18)
B̨ = H̨ ≠ 4fiM̨vac (5.19)

and the main goal of Heisenberg and Euler was to find the vacuum polarisation functions P̨vac(Ę , H̨)
and M̨vac(Ę , H̨) in the background electromagnetic fields Ę , H̨ when the fields are varying slowly on
the scale of the Compton wavelength of the electrons ⁄c = ~

mc
. The last condition was imposed in

order to avoid the dependents of the polarisation functions on the derivatives of the fields strength
tensor. The important step in the realisation of this program was the introduction of the e�ective
Lagrangian Leff

Leff = Ę2 ≠ H̨2

8fi
+ Lvac(Ę , H̨) (5.20)

úIt should be noted that this exponential decay of functions towards the point › = 0 is due to the particular choice
of integration path on Fig.2 which defines the solution. If one use an alternative integration path one would obtain
an exponential increase of the functions towards the zero point › = 0. Such integration paths is given by a loop
that comes as in Fig.2 from the positive-real-infinite, but surrounded only one of the two branch points. Therefore,
a suitable linear combination of these solutions gives the expected increase. The dotted curve in Fig.3 is intended to
schematically indicate this possibility.
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induction B̨ induced in the vacuum were suggested to be written as a sum

D̨ = Ę + 4fiP̨vac (5.17)
B̨ = H̨ ≠ 4fiM̨vac (5.18)

and the main goal of Heisenberg and Euler was to find the vacuum polarisation functions P̨vac(Ę , H̨)
and M̨vac(Ę , H̨) in the background electromagnetic fields Ę , H̨ when the fields are varying slowly on
the scale of the Compton wavelength of the electrons ⁄c = ~

mc . The last condition was imposed in
order to avoid the dependents of the polarisation functions on the derivatives of the fields strength
tensor. The important step in the realisation of this program was the introduction of the e�ective
Lagrangian Leff through which the electric displacement D̨ and magnetic induction B̨ were defined
as [7]

Di = ˆLeff

ˆEi
, Bi = ≠

ˆLeff

ˆHi
. (5.19)

In electrodynamics vector potential play the role of coordinates Ai ≥ qi and the electric field play the
role of velocity Ei = Ȧi ≥ q̇i, thus the inspection of the formula (5.19) defining Di demonstrates that
Di play the role of the momentum Di ≥ pi = ˆL

ˆq̇i
in the Hamiltonian formulation of electrodynamics

[?] and the e�ective Hamiltonian defining the vacuum energy density can be written as

U = EiDi ≠ Leff = Ei
ˆLeff

ˆEi
≠ Leff . (5.20)

This is in a clear correspondence with the classical expression for the Hamiltonian u = q̇ipi ≠ L =
q̇i

ˆL
ˆq̇i

≠ L. The above basic formula (5.20) allows to calculate the e�ective Lagrangian Leff if the
e�ective Hamiltonian U is known. Due to the relativistic and gauge invariance the energy density U
and the e�ective Lagrangian can only depend on two invariants Ę

2
≠H̨

2 and (ĘH̨)2 for slowly waring
background fields. The calculation of U(Ę , H̨) can be reduced to the question of how the energy
density of the electromagnetic vacuum is changing under the action of the constant background
fields Ę and H̨. These changes in the energy density of the vacuum are caused by the shifts of the
energy eigenvalues of the electrons and positrons in the vacuum. The problem reduces therefore to
the solution of the Dirac equation in the background field and calculation of the di�erence of the
vacuum energy density in the presence and in the absence of the background field

�U = U(Ę , H̨) ≠ U(0, 0). (5.21)
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The important step was the introduction of the effective Lagrangian 

the dimensionless parameter Ÿ as it follow form (3.10) is

Ÿ =

Û
m2c3

e~
1
E

=

Û
Ec

E
, where the critical field is Ec = m2c3

e~ ≥ 1016 V olt/cm (3.15)

and for the fields which are much smaller than the critical value Ec = 1016 Volt/cm the Ÿ is much
larger than one, Ÿ Ø 1ú and the decay of the wave functions towards the point › = 0 is exponential

P ≥ e≠fi m2c3
e~E . (3.16)
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in the Hamiltonian formulation of electrodynamics

[?] and the e�ective Hamiltonian defining the vacuum energy density can be written as
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This is in a clear correspondence with the classical expression for the Hamiltonian u = q̇ipi ≠ L =
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≠ L. The above basic formula (5.21) allows to calculate the e�ective Lagrangian Leff if the
e�ective Hamiltonian U is known. Due to the relativistic and gauge invariance the energy density U
and the e�ective Lagrangian can only depend on two invariants Ę
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2 and (ĘH̨)2 for slowly waring
background fields. The calculation of U(Ę , H̨) can be reduced to the question of how the energy
density of the electromagnetic vacuum is changing under the action of the constant background
fields Ę and H̨. These changes in the energy density of the vacuum are caused by the shifts of the
energy eigenvalues of the electrons and positrons in the vacuum. The problem reduces therefore to
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background fields Ę and H̨. These changes in the energy density of the vacuum are caused by
the shifts of the energy eigenvalues of the electrons and positrons in the vacuum. The problem
reduces therefore to the solution of the Dirac equation in the background field and calculation of the
di�erence of the vacuum energy density in the presence and in the absence of the background field

�U = U(Ę , H̨) ≠ U(0, 0). (5.22)

In order to calculate the eigenfunctions and the energy eigenvalues Heisenberg and Euler follow those
of Sauter. If the external magnetic field H and electric field E are applied on the vacuum and both
are pointing in x-direction, the Dirac equation reads as it was in the pure electric case (3.9), but the
corresponding parameters are now expressed as

› =
Ú

1
~c eE

(eEx ≠ E), (5.23)

and

Ÿ =

Û
c2

~c eE

1
m2c2 + eH~

c
(2n + 1 + ‡)

2
(5.24)

where ‡ = ±1. With these new parameters the solution (3.11) remain valid. As long as E π Ec the
pairs creation is so rare that it can be practically ignored (3.16). In the calculation of the energy
density one can ignore the pair creation and consider as the eigenfunctions only those parts of the
functions f and g which does not vanish in one of the half spaces

f1,1 =
I

f1 for › > 0
0 for › Æ 0

, f1,2 =
I

0 for › > 0
f1 for › Æ 0

. (5.25)

In the same way are defined the functions g1,1, g1,2, f2,1, f2,2 and g2,1, g2,2. These functions do not
correspond exactly to the stationary states, but represent the wave packets which are well separated
by the potential barrier in the region II, shown on Fig.3. This is because the tunnelling probability
between the regions I and III is exponentially small (3.16). Thus calculating the shift of the vacuum
energy density one can consider the states f1,1, g1,1, f2,1, g1,1 in the region III as being occupied and
the states f1,2, g1,2, f2,2, g1,2 in the region I as unoccupied. The energy density at › = 0 can now be
calculated as the di�erences of the electron energies in these two regions. The contribution of a give
state to the energy density at a point x is E ≠ eEx ≥ ›, thus the summation over all states takes
the form:

U =
Œÿ

n=0

ÿ

‡x=±1

1
8fi2

⁄ +Œ

≠Œ

dpz

~
dE

~c
(E ≠ eEx)u2

n(y)

1
|f1,1|

2 + |g1,1|
2 + |f2,1|

2 + |g2,1|
2

≠ |f1,2|
2

≠ |g1,2|
2

≠ |f2,2|
2

≠ |g2,2|
2
2
e≠ Ÿ2fi

2 ≠‘(›2≠ 1
a ) (5.26)

where ‘ play the role of the regularisation parameter which should be send to zero at the end of the
calculation.

U = ≠mc2(mc

~ )3( e~E

m2c3 )( e~H

m2c3 )
Œÿ

n=0

ÿ

‡=±1

⁄ +Œ

≠Œ

d›

8fi2 |›|

1
|f1|

2 + |g1|
2 + |f2|

2 + |g2|
2
2
e≠ Ÿ2fi

2 ≠‘(›2≠ 1
a )
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Figure 4: Contour integration over s.

substituting the Sauter wave functions (3.11 ) one can get

U = ≠mc2(mc

~ )3( e~E

m2c3 )( e~H

m2c3 )
Œÿ

n=0

ÿ

‡x=±1

⁄ +Œ

≠Œ

d›

8fi2 |›|e≠ Ÿ2fi
2 ≠‘(›2≠ 1

a ) (5.27)

⁄
ds1

⁄
ds2

e≠(s1+s2)›2

2fi
Ò

(s1 + i
2)(s2 ≠

i
2)

1
›2 + Ÿ2

4(s1 ≠
i
2)(s2 + i

2)

21(s1 + i
2)(s2 + i

2)
(s1 ≠

i
2)(s2 ≠

i
2)

2≠ Ÿ2
4i

Integration over › gives
⁄ +Œ

≠Œ
e≠(s1+s2+‘)›2

|›|d› = 1/(s1 + s2 + ‘),
⁄ +Œ

≠Œ
e≠(s1+s2+‘)›2

|›|
3d› = 1/(s1 + s2 + ‘)2

U = ≠mc2(mc

~ )3( e~E

m2c3 )( e~H

m2c3 )
Œÿ

n=0

ÿ

‡x=±1

1
16fi3

⁄
ds1

⁄
ds2

e≠ Ÿ2fi
2 + ‘

a

Ò
(s1 + i

2)(s2 ≠
i
2)

(5.28)

1 1
(s1 + s2 + ‘)2 + Ÿ2

4(s1 + s2 + ‘)(s1 ≠
i
2)(s2 + i

2)

21(s1 + i
2)(s2 + i

2)
(s1 ≠

i
2)(s2 ≠

i
2)

2≠ Ÿ2
4i

(5.29)

The integral
s

ds1 over the contour shown on Fig.2 has a pole at s1 = ≠s2 ≠ ‘, the integral over
the s2 variable also run over a similar contour. This pole is settled on the l.h.s of the imaginary axes
therefore the original contour can be deform in the s1 complex plane to the one which is surrounding
the pole at s1 = ≠s2 ≠ ‘. Taking the residue and replacing s2 by s = s2 + ‘/2 one can get

U = mc2(mc

~ )3( e~E

m2c3 )( e~H

m2c3 )
Œÿ

n=0

ÿ

‡x=±1

(≠1)
32fi2

⁄
ds

e≠ Ÿ2fi
2 + ‘

a

(s + i
2 + ‘

2)(s + i
2 ≠

‘
2)

(5.30)

Ÿ2(i ≠ ‘) + 2(s + i
2)2

≠
‘2
2

(s ≠
i
2 + ‘

2)3/2(s ≠
i
2 ≠

‘
2)1/2

1s2
≠ ( i≠‘

2 )2

s2 ≠ ( i+‘
2 )2

2≠ Ÿ2
4i

(5.31)

where
Ÿ2 = m2c3

~ eE
+ 2H

E
(n + 1 + ‡x

2 ) = 1
a

+ 2 b

a
(n + 1 + ‡x

2 ) (5.32)
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In the case of week electric field one can ignore the pair creation and the energy  
density of the vacuum will take the form  

Substituting the Sauter wave functions one can get the vacuum energy density 
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where ‡ = ±1. With these new parameters the solution (3.11) remain valid. As long as E π Ec the
pairs creation is so rare that it can be practically ignored (3.16). In the calculation of the energy
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correspond exactly to the stationary states, but represent the wave packets which are well separated
by the potential barrier in the region II, shown on Fig.3. This is because the tunnelling probability
between the regions I and III is exponentially small (3.16). Thus calculating the shift of the vacuum
energy density one can consider the states f1,1, g1,1, f2,1, g1,1 in the region III as being occupied and
the states f1,2, g1,2, f2,2, g1,2 in the region I as unoccupied. The energy density at › = 0 can now
be calculated as the di�erences of the electron energies in these two regions. The contribution of a
given state to the energy density at a point x is E ≠ eEx ≥ ›, thus the summation over all states
takes the form:

U =
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where ‘ play the role of the regularisation parameter which should be send to zero at the end of the
calculation.
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~ )3( e~E
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Œÿ

n=0

ÿ

‡=±1

⁄ +Œ

≠Œ

d›

8fi2 |›|

1
|f1|

2 + |g1|
2 + |f2|

2 + |g2|
2
2
e≠ Ÿ2fi

2 ≠‘(›2≠ 1
a )

7

where ε is the regularisation parameter  
where

a = e~E

m2c3 , b = e~H

m2c3 (5.39)

introducing as æ s we will get

Leff = E
2

≠ H
2

2 ≠ 4fi2mc2(mc

~ )3
⁄ Œ

0

ds

s3 e≠ s
a

a2s cos(s)
sin(s)

b
as cosh( b

as)
sinh( b

as)
≠ 1 + e2 E

2
≠ H

2

3 s2
} (5.40)

1. The renormalisation of the quantum electrodynamics was clearly performed
2. The asymptotic behaviour of the e�ective Lagrangian at small and large fields was discovered.
3.The zeta regularisation was introduced and used to express the finale result.

mc2 = 8.2 · 10≠7 g cm2

s2 ⁄c = ~
mc

= 3.86 · 10≠11cm
mc2

( ~
mc)3 = 1.43 · 1025 g

cm s2

6 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

7 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].

8 Schwinger approach

Performing integration over wave function parameters one can get

9 Hawing Radiation
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The last term of the integrand can be expanded in ‘ and have the form

≠
1

32fi2

⁄ ≠iŒ

+iŒ
ds

e≠ Ÿ2fi
2 + ‘

a

(s + i
2 + ‘

2)(s + i
2 ≠

‘
2)

Ÿ2(i ≠ ‘) + 2(s + i
2)2

≠
‘2
2

(s ≠
i
2 + ‘

2)3/2(s ≠
i
2 ≠

‘
2)1/2

1s2
≠ ( i≠‘

2 )2

s2 ≠ ( i+‘
2 )2

2≠ Ÿ2
4i

= ≠
1

32fi2

⁄ ≠iŒ

+iŒ
ds

e
≠ Ÿ2‘

1+4s2 + ‘
a

(s + i
2)2 ≠

‘2
4

Ÿ2(i ≠ ‘) + 2(s + i
2)2

≠
‘2
2

(s ≠
i
2 + ‘

2)[(s ≠
i
2)2 ≠

‘2
4 ]1/2

(5.33)

= ≠
1

32fi2

⁄ ≠iŒ

+iŒ
ds

Ÿ2(i ≠ ‘) + 2(s + i
2)2

(s2 + 1
4)2 e

≠ Ÿ2‘
4s2+1 + ‘

a (5.34)

Substituting the expression for Ÿ2 we shall get

= ≠
1

32fi2 (
Œÿ

n=0
+

Œÿ

n=1
)

⁄ ≠iŒ

+iŒ
ds

e
4s2

1+4s2
‘
a ≠2 b

a
‘

1+4s2 n

(s + i
2)2 ≠

‘2
4

[ 1
a + 2 b

an](i ≠ ‘) + 2(s + i
2)2

≠
‘2
2

(s ≠
i
2 + ‘

2)[(s ≠
i
2)2 ≠

‘2
4 ]1/2

= ≠
1

32fi2 (
Œÿ

n=0
+

Œÿ

n=1
)

⁄ ≠iŒ

+iŒ
ds

e
4s2

1+4s2
‘
a ≠2 b

a
‘

1+4s2 n

(s + i
2)2 ≠

‘2
4

[ 1
a ](i ≠ ‘) + 2(s + i

2)2
≠

‘2
2

(s ≠
i
2 + ‘

2)[(s ≠
i
2)2 ≠

‘2
4 ]1/2

≠
1

32fi2 (
Œÿ

n=0
+

Œÿ

n=1
)

⁄ ≠iŒ

+iŒ
ds

e
4s2

1+4s2
‘
a ≠2 b

a
‘

1+4s2 n

(s + i
2)2 ≠

‘2
4

[2 b
an](i ≠ ‘)

(s ≠
i
2 + ‘

2)[(s ≠
i
2)2 ≠

‘2
4 ]1/2

(5.35)

then performing summation and dropping the ‘/a additional term which was before

= ≠
2

32fi2

⁄ ≠iŒ

+iŒ
dse

≠ 1
1+4s2

‘
a

1 + e
≠2 b

a
‘

1+4s2

1 ≠ e
≠2 b

a
‘

1+4s2

1
(s + i

2)2 ≠
‘2
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or

= ≠
2

32fi2

⁄ ≠iŒ

+iŒ
dse

≠ 1
1+4s2

‘
a

1 + e
≠2 b

a
‘

1+4s2

1 ≠ e
≠2 b

a
‘

1+4s2

1
a(i ≠ ‘) + 2(s + i

2)2
≠

‘2
2

(s2 + 1
4)2

≠
2

32fi2

⁄ ≠iŒ

+iŒ
dse

≠ 1
1+4s2

‘
a

e
≠2 b

a
‘

1+4s2

[1 ≠ e
≠2 b

a
‘

1+4s2 ]2
2 b

a(i ≠ ‘)
(s2 + 1

4)2 (5.37)

The integral representation can be written in it finale form as

Leff = E
2

≠ H
2

2 ≠ 4fi2mc2(mc
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⁄ Œ

0

ds
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{
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} (5.38)

9where  

where
a = e~E

m2c3 , b = e~H

m2c3 (5.39)

introducing as æ s we will get
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1. The renormalisation of the quantum electrodynamics was clearly performed
2. The asymptotic behaviour of the e�ective Lagrangian at small and large fields was discovered.
3.The zeta regularisation was introduced and used to express the finale result.

mc2 = 8.2 · 10≠7 g cm2

s2 ⁄c = ~
mc

= 3.86 · 10≠11cm
mc2

( ~
mc)3 = 1.43 · 1025 g

cm s2

6 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

7 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].

8 Schwinger approach

Performing integration over wave function parameters one can get

9 Hawing Radiation

10

For strong and week magnetic fields  the quantum correction have the form  
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and the finite term will be
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where
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1. The renormalisation of the quantum electrodynamics was clearly performed
2. The asymptotic behaviour of the e�ective Lagrangian at small and large fields was discovered.
3.The zeta regularisation was introduced and used to express the finale result.

mc2 = 8.2 · 10≠7 g cm2

s2 ⁄c = ~
mc

= 3.86 · 10≠11cm
mc2

( ~
mc)3 = 1.43 · 1025 g

cm s2
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Leff = ≠H2

2 ≠ 4fi2mc2(mc

~ )3
⁄ Œ

0

ds

s3 e≠s{ bs cosh(bs)
sinh(bs) ≠ 1 ≠ b2

3 s2} ≥ ≠H2

2 + 16fi2( e2

~c
)H2

12 ln( e~H
m2c3 )2

Leff ¥ ≠H2

2 + ( e2

~c
) H2

12fi2 ln( e~H
m2c3 )2

Leff ¥ ≠H2

2 + 2
45( e2

~c
)2( ~

mc
)3 1

mc2 (H̨2)2 ¥ ≠H2

2 + 1
360fi2

~e4

m4c7 (H̨2)2

The integral representation can be written in the finale form as

Leff = E2 ≠ H2

8fi
≠ 4fi2mc2(mc

~ )3
⁄ Œ

0

ds

s3 e≠s{as cos(as)
sin(as)

bs cosh(bs)
sinh(bs) ≠ 1 + a2 ≠ b2

3 s2} (5.43)

where
a = e~E

m2c3 , b = e~H
m2c3 (5.44)

introducing as æ s we will get

Leff = E2 ≠ H2

2 ≠ 4fi2mc2(mc

~ )3
⁄ Œ

0

ds

s3 e≠ s
a {a2s cos(s)

sin(s)

b
as cosh( b

as)
sinh( b

as)
≠ 1 + e2 E2 ≠ H2

3 s2} (5.45)
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1. The renormalisation of the quantum electrodynamics was clearly performed
2. The asymptotic behaviour of the e�ective Lagrangian at small and large fields was discovered.
3.The zeta regularisation was introduced and used to express the finale result.
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6 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

7 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].

8 Schwinger approach

Performing integration over wave function parameters one can get

9 Hawing Radiation

10

The QED vacuum is paramagnetic !   



Heisenberg-Euler Effective  Lagrangian

1. The zeta function regularisation was introduced and used to express the finale result  
2. The renormalisation of Quantum Electrodynamics was clearly performed 
3. The results represent infinite sum of the electromagnetic coupling constant expansion   
4. The asymptotic behaviour of the effective Lagrangian at week and  strong fields was 

derived  
5. Weak expansion coincides  with the Euler-Kockel Scattering of Light by Light 
6. Clear understanding the tunnelling production of electron-positron pairs by strong 

electric field  
7. The strong field behaviour demonstrates the vacuum instability known as Moscow zero

and the finite term will be
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The integral representation can be written in the finale form as
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s3 e≠s{as cos(as)
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where
a = e~E

m2c3 , b = e~H
m2c3 (6.52)

introducing as æ s we will get
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1. The renormalisation of the quantum electrodynamics was clearly performed
2. The asymptotic behaviour of the e�ective Lagrangian at small and large fields was discovered.
3.The zeta regularisation was introduced and used to express the finale result.

mc2 = 8.2 · 10≠7 g cm2

s2 ⁄c = ~
mc

= 3.86 · 10≠11cm
mc2

( ~
mc)3 = 1.43 · 1025 g

cm s2

The breakdown field strength at which dry air loses its insulating ability and allows a discharge to
pass through is Eb = 3 · 104 V olt/cm. At this field strength, the electric energy density is:

Eb = 3 · 104 V olt/cm Uelec = 4 · 102 g

cm s2

Ec = 1016 V olt/cm Uelec = 0.8 1026 g

cm s2

Hc = 4.4 · 1013 Gauss Umagnet = 0.8 · 1026 g

cm s2

Hneutron star = 1015 Gauss Umagnet = 4 · 1028 g

cm s2

(6.54)

The other useful representation is in c = ~ = 1 and s æ m2s

Leff = E2 ≠ H2

8fi
≠ 4fi2

⁄ Œ

0

ds

s3 e≠m2s{eEs cos(eEs)
sin(eEs)

eHs cosh(eHs)
sinh(eHs) ≠ 1 + a2 ≠ b2

3 s2} (6.55)
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Leff ¥ ≠H2

2 + e
2

~c

H2

24fi2 ln( e~H
m2c3 ) = ≠H2

2
1
1 ≠ –el

12fi2 ln H
Hc

2

(6.55)

where –el = e
2
~c

. The vacuum became unstable at extremely strong field !

H0 = Hc e

12fi2
–el (6.56)

7 Physical Interpretation of Results

The zeta function regularisation was introduced and used to express the finale result
The renormalisation of Quantum Electrodynamics was clearly performed
The results represent infinite sum of the series in the electromagnetic coupling constant expansion
The asymptotic behaviour of the e�ective Lagrangian at week and strong fields was derived
Weak expansion coincides with the Euler-Kockel Scattering of Light by Light
Clear understanding the tunnelling production of electron-positron pairs by strong electric field
The strong field behaviour demonstrate the vacuum instability for strong magnetic field known as
Moscow zero

mc
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pass through is Eb = 3 · 104
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Gauss Umagnet = 4 · 1028 g
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(7.57)

8 Schwinger Approach and Anomalies

It was discovered that the Heisenberg-Euler Lagrangian is a sum of one loop diagrams with electron
running in the loop and that the sum can be expressed as a functional determinant of the Dirac
operator

W
(1) = ≠i T r ln(“� + m) = i

⁄ Œ

0

ds

s
Tr exp ≠i(“� + m)s = i

2

⁄ Œ

0

ds
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(8.58)

L(1)(x) = i

2

⁄ Œ

0

ds

s
e

≠im
2
s
tr(x|U(s)|x) (8.59)
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Schwinger Effective Lagrangian and Anomalies

A pseudoscalar interaction between the spinless neutral meson field and the proton field 
is described by the term    

photons. The Lagrange function for a spinless neutral meson field, in scalar interaction with the
proton-antiproton field, is given by

L = ≠1
2[(ˆµ„)2 + m

2
„

2] ≠ g

2„[Â̄, Â] + Â̄(“� + M + g„)Â (9.74)

therefore
<

1
2[Â̄, Â] >= ≠ˆL(1)

/ˆM = ≠M

⁄ Œ

0
dse

≠iM
2
s
tr(x|U(x)|x) (9.75)

The first term in the expansion of L(1) for week field is

L(1) = ≠ e
2

12fi2

⁄ Œ

0
dss

≠1
e

≠M
2
sF (9.76)

The e�ective Lagrangian function coupling term between the neutral meson and the electromagnetic
field is given by

L = g„(x) <
1
2[Â̄, Â] >= ≠g„(x)ˆL(1)

/ˆM = ≠g„(x)M
⁄ Œ

0
dse

≠iM
2
s
tr(x|U(x)|x)

= g„(x) e
2

6fi2 M

⁄ Œ

0
dse

≠M
2
sF = e

2

12fi2
g

M
„(x)(H̨2 ≠ Ę2) (9.77)

A pseudoscalar interaction between the spinless neutral meson field and the proton field is described
by the term

g

2„[Â̄, “5Â] (9.78)

thus the e�ective Lagrangian will be

L = g„ <
1
2[Â̄, “5Â] >= ≠g„ˆL(1)

/ˆM = ≠g„M

⁄ Œ

0
dse
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2
s
tr(x|“5U(x)|x)

= ≠ g„M

(4fi)2
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0

ds

s2 e
≠M
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≠l(s)
tr(“5e

1
2 e‡F s) = g„

e
2

4fi2 M
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0
dse

≠M
2
sG = e

2

4fi2
g

M
„ĘH̨ (9.79)

This e�ective coupling term implies the decay of a stationary neutral meson, into two perpendic-
ularly polarised photons. This is chiral anomaly corresponding to the famous ”triangle diagram”,
contributing to the pion decays fi0 æ ““.

10 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

11 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].
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This effective coupling term implies the decay of a neutral meson, into two perpendicularly 
polarised photons. This is chiral anomaly corresponding to the famous "triangle diagram", 
contributing to the pion decays.  
    



Dimensional  Transmutation 
Let us consider the theory of a single real scalar field     
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A pseudoscalar interaction between the spinless neutral meson field and the proton field is described
by the term
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This e�ective coupling term implies the decay of a stationary neutral meson, into two perpendic-
ularly polarised photons. This is chiral anomaly corresponding to the famous ”triangle diagram”,
contributing to the pion decays fi0 æ ““.

10 Dynamical Symmetry Breaking and Dimensional Transmutation

Let us consider the theory of a single massless real scalar field

L = 1
2(ˆµ„)2 ≠ ⁄

4!„
4 (10.80)

The e�ective Lagrangian

L = ≠ ⁄

4!„
4 + A„

2 + B„
4 + 1

32fi2

⁄ Œ

0

ds

s3 e
≠⁄

„2
2 (10.81)

and the Coleman-Weinberg renormalisation condition

d
2L

d„2 |„=M = 0,
d

4L
d„4 |„=M = ≠⁄ (10.82)
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The e�ective Lagrangian became

L = ≠ ⁄

4!„
4 ≠ ⁄

2
„

4

256fi2 (ln „
2

M2 ≠ 25
6 ) (10.83)

and the new minimum occurs at nonzero value

< „ >
2= M

2
e

≠ 32fi2
3⁄ . (10.84)

The one loop corrections have generated spontaneous symmetry breaking. The minimum arose from
balancing a term of order ⁄ against a term of order ⁄

2 ln(„/M), thus, for small ⁄, it inevitably
occurred at large ln(„/M), outside the expected domain of validity of this approximation.

In massless scalar electrodynamics a similar computation will give

L = ≠ ⁄

4!„
4 ≠ ( 5⁄

2

1152fi2 + 3e
4

64fi2 )„4(ln „
2

M2 ≠ 25
6 ) (10.85)

Here one can obtain a minimum by balancing a term of order ⁄ against a term of order e
4 ln(„/M),

then one can choose M to be at the actual location of the minimum, < „ >. In that case we have

L = ≠ ⁄

4!„
4 ≠ 3e

4

64fi2 „
4(ln „

2

< „ >2 ≠ 25
6 ) (10.86)

The minimum should be deduced from equation 0 = LÕ(„) = (⁄

6 ≠ 11e
4

16fi2 ) < „ >
3 or

⁄ = 33
8fi2 e

4 (10.87)

Instead of two initial dimensionless parameters ⁄ and e there now one have the dimensionless cou-
pling constant e and dimensional one < „ >. This phenomena was called by Coleman-Weinberg
dimensional transmutation. The conclusion is that the scalar particle will get the masses

m
2
S = 3e

4

8fi2 < „ >
2
, m

2
V = e

2
< „ >

2

and finally
m

2
S

m
2
V

= 3
2fi

e
2

4fi
. (10.88)

11 Extension of Heisenberg-Euler Lagrangian to Yang-Mills theories

The summation of the one loop diagrams is extremely di�cult if one use combinatorial approach.
The most convenient method is by calculating the determinant of the second variation of the actin
functional

�(A) = SY M (A) + i

2Tr ln[”
2
SY M (A)
”A ”A

] ≠ iT r ln[Òµ(A)Òµ(A)] (11.89)

where

SY M (A) = ≠1
4

⁄
d

4
x trGµ‹Gµ‹ , Gµ‹ =

Hµ‹(–) = ”
2
SY M (A)
”A ”A

= ÷µ‹Ò‡(A)Ò‡(A) ≠ 2gGµ‹ + (– ≠ 1)Òµ(A)Ò‹(A),

HF P = Òµ(A)Òµ(A). (11.90)
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Using proper time representation

�(A) = SY M (A) ≠ i

2

⁄ Œ

0

ds

s
Tre

≠iHs + i

⁄ Œ

0

ds

s
Tre

≠iHF P s (11.91)

or in equivalent form

Leff = LY M ≠ i

2

⁄ Œ

0

ds

s
Tr(x|U(s)|x) + i

⁄ Œ

0

ds

s
Tr(x|U0(s)|x) (11.92)
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Using proper time representation
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0
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Tr(x|U(s)|x) + i
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0

ds

s
Tr(x|U0(s)|x) (11.92)

where
U(s) = e

≠iHs
, U0(s) = e

≠iHF P s (11.93)

For covariantly constant fields the matrix elements can be calculated and are

(x|U(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s) + 2Ns} (11.94)

(x|U0(s)|y) = i

(4fis)2 exp {≠ i

4(x ≠ y)K(s)(x ≠ y) + i

2xNy ≠ L(s)} (11.95)

where the corresponding matrices are:

N = igG

K(s) = N coth(Ns)

L(s) = 1
2 tr ln[(Ns) sinh(Ns)] (11.96)

and
L(1) = ≠ 1

32fi2

⁄
ds

s3 Trexp{≠L(s) + 2Ns} + 1
16fi2

⁄
ds

s3 Trexp{≠L(s)} (11.97)

Substituting the matrix elements and calculating the traces one can get:

L(1) = ≠ 1
8fi2

⁄
ds

s3 e
≠iµ

2
s

(gF1s) (gF2s)
sinh(gF1s) sinh(gF2s) ≠

≠ 1
4fi2

⁄
ds

s3 e
≠iµ

2
s(gF1s) (gF2s)[ sinh(gF1s)

sinh(gF2s) + sinh(gF2s)
sinh(gF1s) ] (11.98)

where
F

2
1 = ≠F ≠ (F2 + G2)1/2

, F
2
2 = ≠F + (F2 + G2)1/2 (11.99)

and we have introduced the infrared regularisation parameter µ
2. Choosing the integration counters

so as to guarantee the convergence of the proper time integrals, that is to make substitution s æ ≠is

in the first and third integrals one can get

L(1) = 1
8fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s

(gf1s) (gf2s)
sinh(gf1s) sin(gf2s) +

+ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠iµ

2
s(gf1s) (gf2s) sin(gf1s)

sinh(gf2s)

≠ 1
4fi2

⁄ Œ

s0

ds

s3 e
≠µ

2
s(gf1s) (gf2s) sin(gf2s)

sinh(gf1s) (11.100)
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and ultraviolet cut o� parameter s0. Now we can perform renormalisation of the Lagrangian

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1 (gf1s) (gf2s)

sinh(gf1s) sin(gf2s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
f1

1
f2

sin(gf1s)
sinh(gf2s) ≠ f1

2

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
f2

1
f1

sin(gf2s)
sinh(gf1s) ≠ f2

2
(11.101)
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3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1
f1f2

sin(gf1s)
sinh(gf2s) ≠ f

2
1

2

≠ g
2

4fi2

⁄ Œ

0

ds

s
e

≠µ
2
s
1
f1f2

sin(gf2s)
sinh(gf1s) ≠ f

2
2

2
(11.102)

Let us first consider pure chromomagnetic case G = 0, F = (H2 ≠ E2)/2 > 0 and f
2
1 = 2F , f

2
2 = 0

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
3(gs)2F

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.103)

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
6(gf1s)2

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.104)

In the limit of strong magnetic fields

L(1) = 1
8fi2

⁄ Œ

0

ds

s3 e
≠µ

2
s
1

gf1s

sinh(gf1s) ≠ 1 + 1
6(gf1s)2

2
+

+ g
2

4fi2

⁄ Œ

0

ds

s
e

≠iµ
2
s
1

f1 sin(gf1s)
gs

≠ f
2
1

2
(11.105)

The asymptotic behaviour for strong magnetic fields is

L(1) ¥ ≠ 11
48fi2 (gH)2 ln gH

µ2 (11.106)

The first term represents the diamagnetism which is counteracting to the external field caused by
the charged gluons circling in the vacuum due to the Lorentz force. The second term represent
paramagnetism, an e�ect associated with the polarisation of gluon spins.

As one can clearly see in QED the asymptotic is di�erent

L(1) ¥ + 1
24fi2 (eH)2 ln(eH

m2 ) (11.107)
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The first term represents the diamagnetism which is counteracting to the external field caused by
the charged gluons circling in the vacuum due to the Lorentz force. The second term represent
paramagnetism, an e�ect associated with the polarisation of gluon spins.
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in QCD

The QCD vacuum is diamagnetic  !   The QED vacuum is paramagnetic !   
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ˆL
ˆF |

t=ln( 2F
µ4 ) = G = 0 = 1 (12.109)

this leads to the renormalised

L(1) = g
2
µ

4

8fi2

⁄ Œ

0

ds

s3

1
as

sinh as
≠ a

2
s

2 ( 1
sinh s

≠ s cosh s

sinh2
s

)
2

+

+ g
2
µ

4

4fi2

⁄ Œ

0

ds

s3

1
as sin(as) ≠ a

2
s

2 (sin s + s cos s)
2

(12.110)

Integrating the expression one can get

L(1) = ≠ 11
48fi2 (gH)2[ln gH

µ2 ≠ 1
2] (12.111)

The energy density of the vacuum will take the form

U(H) = H2

2 + 11
48fi2 (gH)2[ln gH

µ2 ≠ 1
2] (12.112)

with its minimum outside of the origin

gHvac = µ
2 exp (≠24fi

2

11g2 ). (12.113)

13 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

14 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].

15 Schwinger approach

Diamagnetic materials are repelled by magnetic fields and form induced magnetic fields in the
direction opposite to that of the applied magnetic field. An applied magnetic field creates an induced
magnetic field in them in the opposite direction,

Paramagnetism is a form of magnetism whereby certain materials are weakly attracted by an
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13 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

14 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].
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12 Cromomagnetic Condensate

The di�erent asymptotic limits of the e�ective action and the fact that the QCD vacuum responds
as a paramagnetism suggest that small perturbation by the external fields can generate stable con-
densate. In order to check this guess one should find an exact expression of the e�ective action at
all values of fields. That happens to be possible if one introducing the following renormalisation
condition

ˆL
ˆF |

t=ln( 2F
µ4 )=G=0 = ≠1 (12.109)

this leads to the renormalised

L(1) = g
2
µ

4

8fi2

⁄ Œ

0

ds

s3

1
as

sinh as
≠ a

2
s

2 ( 1
sinh s

≠ s cosh s

sinh2
s

)
2

+

+ g
2
µ

4

4fi2

⁄ Œ

0

ds

s3

1
as sin(as) ≠ a

2
s

2 (sin s + s cos s)
2

(12.110)

Integrating the expression one can get

L(1) = ≠ 11
48fi2 (gH)2[ln gH

µ2 ≠ 1
2] (12.111)

The energy density of the vacuum will take the form

U(H) = H2

2 + 11
48fi2 (gH)2[ln gH

µ2 ≠ 1
2] (12.112)

with its minimum outside of the origin

< gHvac >= µ
2 exp (≠24fi

2

11g2 ). (12.113)

13 Lamb Shift

In 1947 Willis Lamb and Robert Retherford carried out an experiment using microwave techniques
to stimulate radio-frequency transitions between 2S1/2 and 2P1/2 levels of hydrogen [8]. By using
lower frequencies than for optical transitions the Doppler broadening could be neglected (Doppler
broadening is proportional to the frequency). The energy di�erence Lamb and Retherford found
was a rise of about 1000 MHz of the 2S1/2 level above the 2P1/2 level.

14 Casimir E�ect

Dutch physicists Hendrik Casimir and Dirk Polder at Philips Research Labs proposed the existence
of a force between two polarisable atoms and between such an atom and a conducting plate in
1947, this special form is called the Casimir-Polder force. After a conversation with Niels Bohr,
who suggested it had something to do with zero-point energy, Casimir alone formulated the theory
predicting a force between neutral conducting plates in 1948 which is called the Casimir e�ect in
the narrow sense [9].

18



High Order Corrections and Monte Carlo Simulations 

Reducing full one-loop amplitudes to scalar integrals at the 
integrand level 

G. Ossola, C. Papadopoulos and R. Pittau

With the ongoing evolution of the experimental programs of the LHC and the 
International Linear Collider, high precision predictions for multi-particle 
processes are urgently needed. In the last years we have seen a remarkable 
progress in the theoretical description of multi-particle processes at tree-order, 
thanks to very efficient recursive algorithms. Nevertheless the current need of 
precision goes beyond tree order and therefore a similar description at the one 
loop level is more than desirable.



  

It was shown how computing the integrand of any one-loop amplitude at special 
values of the integration momentum allows the one-shot reconstruction of all the 
coefficients of the scalar loop functions and of the rational terms. Then, by 
simply multiplying those coefficients by the known scalar integrals, the 
computation of the amplitude becomes trivial. The method should be particularly 
useful in the case when recursive techniques are used to numerically compute 
the integrand.    
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http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A725191


MIXMAX random number generator for MC simulations 

The Monte Carlo method is widely used in many areas of science and applications:   

Physical sciences, Engineering, Climate change and radiative forcing, Computational biology, 
Computer graphics, Applied statistics, Artificial intelligence for games, Design and visuals, 
Search and rescue, Finance and business    

1. The Consortium has developed a cutting-edge theory of the MIXMAX generator. The MIXMAX code in C and C++ was 
developed by Konstantin Savvidy. The MIXMAX code generates 64-bit high quality random sequences and it is one of 
the fastest generators on the market:  

                https://mixmax.hepforge.org 

2.The  MIXMAX generator has been implemented into Geant4/CLHEP  and ROOT software as default 
generator. "Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application 
include high energy, nuclear and accelerator physics, as well as studies in medical and space science". 

                        http://geant4.cern.ch 

                        http://proj-clhep.web.cern.ch/proj-clhep/ 

                        https://gitlab.cern.ch/CLHEP/CLHEP/blob/master/Random/Random/MixMaxRng.h 

3. The code of the MIXMAX generator has been  implemented into PYTHIA 8 software,  
    which is widely used in high energy experiments at CERN: 

                http://home.thep.lu.se/~torbjorn/pythia81html/Welcome.html 

                      http://home.thep.lu.se/~torbjorn/doxygen/MixMax_8h_source.html 

                  http://home.thep.lu.se/~torbjorn/doxygen/dir_f0ac0583067f8579d45895eb993b0618.html

https://mmm.cern.ch/owa/redir.aspx?C=t22s2KmwzVPDMCbXLAQ-jEUvrAy2uvFHumxIsXpw303rjF0fJZ_VCA..&URL=https%3a%2f%2fmixmax.hepforge.org
https://mmm.cern.ch/owa/redir.aspx?C=XZXRvWSfgxNlc98dWhkmnAIhGgYC2i0iKWgKXCb1zE_8s10fJZ_VCA..&URL=http%3a%2f%2fgeant4.cern.ch
https://mmm.cern.ch/owa/redir.aspx?C=hvfMuiVmLFsGu07oUUBs38ML41YwXQ_zDqdiz_57kDj8s10fJZ_VCA..&URL=http%3a%2f%2fproj-clhep.web.cern.ch%2fproj-clhep%2f
https://mmm.cern.ch/owa/redir.aspx?C=bNSQGTPEDbHfJaivuRtoEfA4huPohX7MgRpFMHvdWLYN210fJZ_VCA..&URL=https%3a%2f%2fgitlab.cern.ch%2fCLHEP%2fCLHEP%2fblob%2fmaster%2fRandom%2fRandom%2fMixMaxRng.h
https://mmm.cern.ch/owa/redir.aspx?C=ys-uuyFXc_bjg0HKVdZgmqpz9YF5DSgmQuMRFGK71XkN210fJZ_VCA..&URL=http%3a%2f%2fhome.thep.lu.se%2f%7etorbjorn%2fpythia81html%2fWelcome.html
https://mmm.cern.ch/owa/redir.aspx?C=ZE28g8bW6ijWr6lXbeYNdJFZhg0352U-E85tITpjjzweAl4fJZ_VCA..&URL=http%3a%2f%2fhome.thep.lu.se%2f%7etorbjorn%2fdoxygen%2fMixMax_8h_source.html
https://mmm.cern.ch/owa/redir.aspx?C=qFHJT1WvUngYHr8e2UZespzVpWM4JknnmKmNCkMRhbgeAl4fJZ_VCA..&URL=http%3a%2f%2fhome.thep.lu.se%2f%7etorbjorn%2fdoxygen%2fdir_f0ac0583067f8579d45895eb993b0618.html

