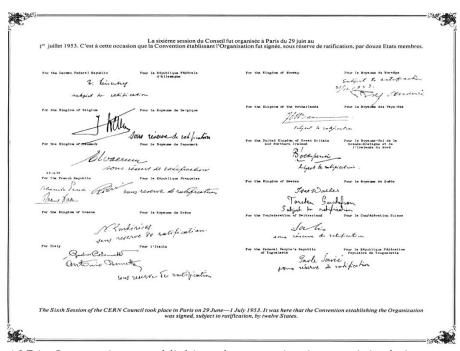


Today:

CERN

Founded in 1954 by 12 European countries


2400 Staff

Fellows and Associates

199 Students

9534 Users (~ 100 nationalities)

Budget (2009) 1177 MCHF

1954: Convention establishing the organization - original signatures

The 20 member states

Some history for HEP at NCSR "D"

- 1962: E.Simopoulou. Built prototype Spark Chamber.
- 1964: Tom Ypsilantis, Rigas Rigopoulos (CERN) and A. Filippas

are invited by **Themis Kanellopoulos** (Director of Demokritos – employed by CERN previously) who is willing to create a HEP team.

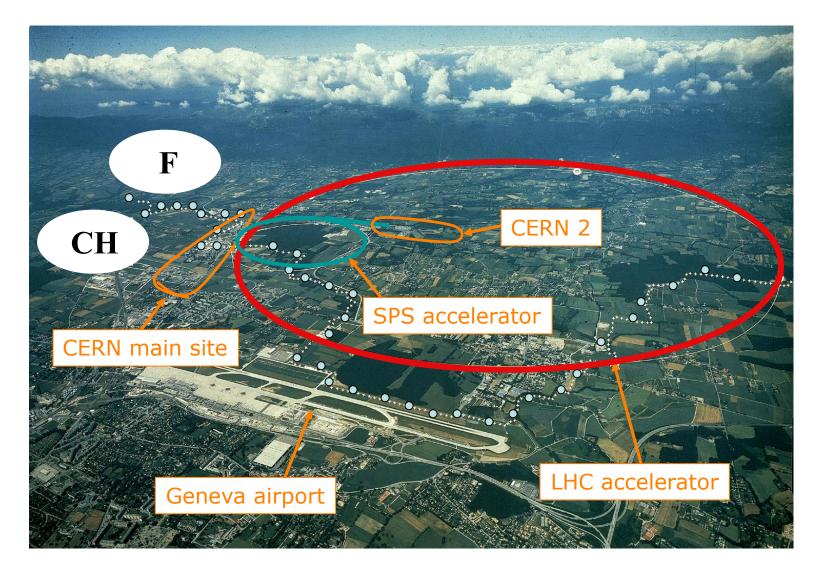
1965: Tom Ypsilantis. The team is funded with a significant budget

Participation in **Bubble Chamber** experiment at CERN

Equipment: First Computer (1966), 1 Enetra machine, scanning tables

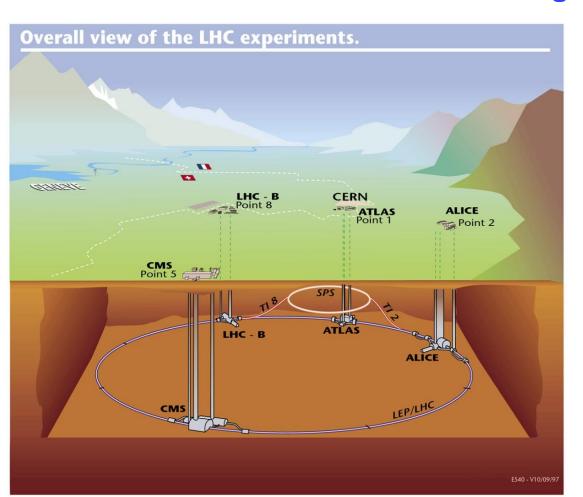
- 1963 1979: Anna Vayaki neutrino physics (BEBC, BNL)
- **1980 : Manolis Dris** initiates **instrumentation** (electronics + detectors)
- 1985 87 : CPLEAR experiment Work on Trigger system
- 1980 LEP: ALEPH and DELPHI experiments
- 1984 89: Participation in the construction of the ALEPH TPC.
- 1984 1993 DELPHI: Ring Imaging CHerenkov (RICH) (T. Ypsilantis),

Barel RICH Drift Field frames

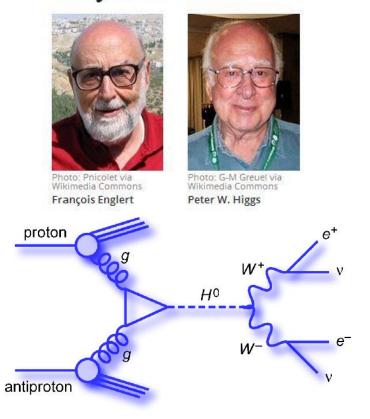

RICH Calibration system, Forward RICH.

- ... 2002: Data analysis with ALEPH and DELPHI at LEP I and LEP II
- 1995 .. : Work within the CMS collaboration at the LHC (Silicon detectors, Trigger and DAQ, Physics Analysis)

Large Hadron Collider



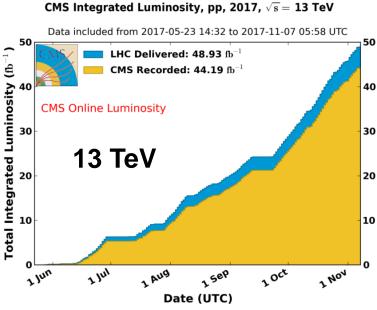
LHC Experiments

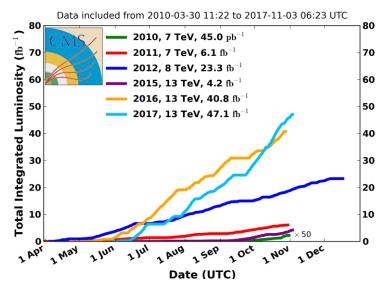


With colliding protons, we use $E = Mc^2$ to convert Energy into Matter to explore

New Forces and New building blocks of matter.

The Nobel Prize in Physics 2013


CMS Experiment



1700 physicists,700 students,950 engineers/technicians,180 institutions from 43 countries

~ 700 papers in various physics topics.

INPP @ CMS

NCSR 'Demokritos', Institute of Nuclear & Particle Physics

Staff

- G. Anagnostou,
- G. Daskalakis,
- A. Kyriakis,
- D. Loukas*
- * Institution Representative

Postdocs

Ph.D. Students

- P. Asenov (EAIAEK), I. Kazas (on contract)
- P. Assiouras,
- G. Paspalaki

ACTIVITIES during the life cycle of the CMS EXPERIMENT

Engineers

CONSTRUCTION

OPERATION

- Pre-shower detector
- Trigger/DAQ
- Test-Beams & Service work
- New analysis techniques/algorithms
- Physics Measurements
- CMS Upgrade for Phase-II

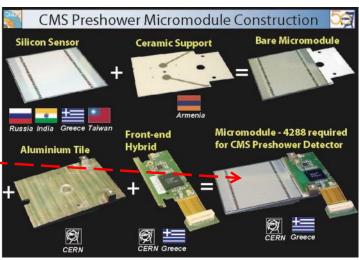
PHYSICS MEASUREMENTS

INPP-CMS group have made <u>significant contributions</u> in several areas:

Standard Model (SM), TOP, Higgs, Searches beyond SM, Supersymmetry

Preshower Detector

- The CMS Preshower Detector
- 14 years of development & construction
- 4288 micromodules in 8 Dees
- 600 micromodules made by I.N.P.P.
- Close collaboration with Greek Industry



4500 hybrids assembled by PRISMA

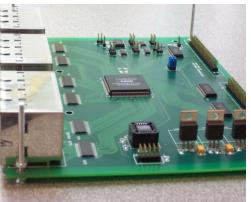
Greek Contribution: ~ 1.3 Meuro

Industry Return: ~ 300 k euro

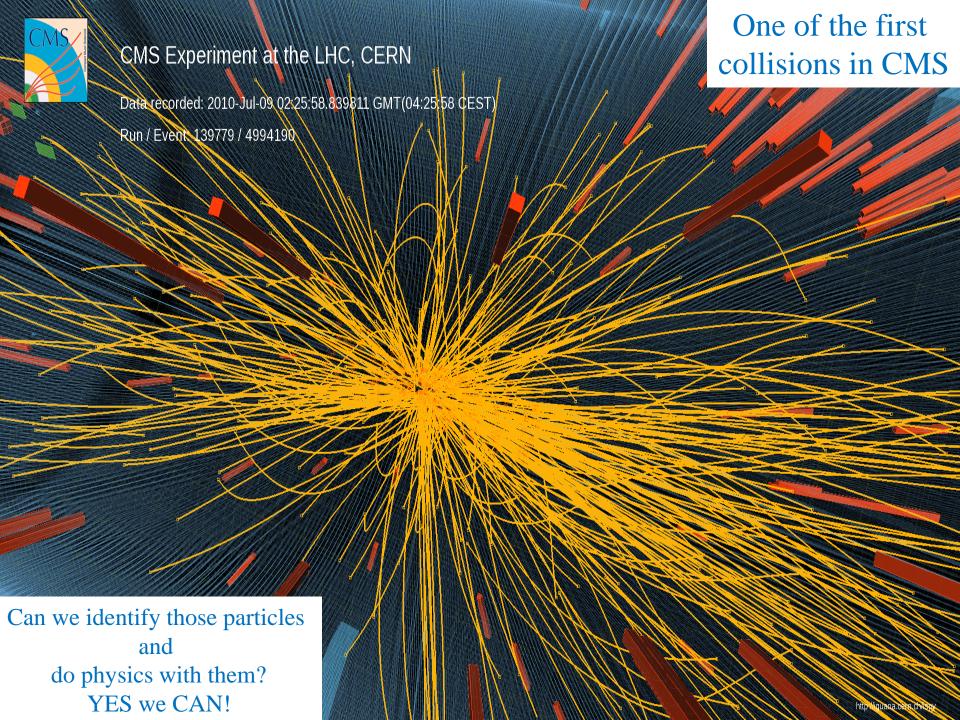
The CMS Trigger and DAQ

CMS Trigger and Data Acquisition System:

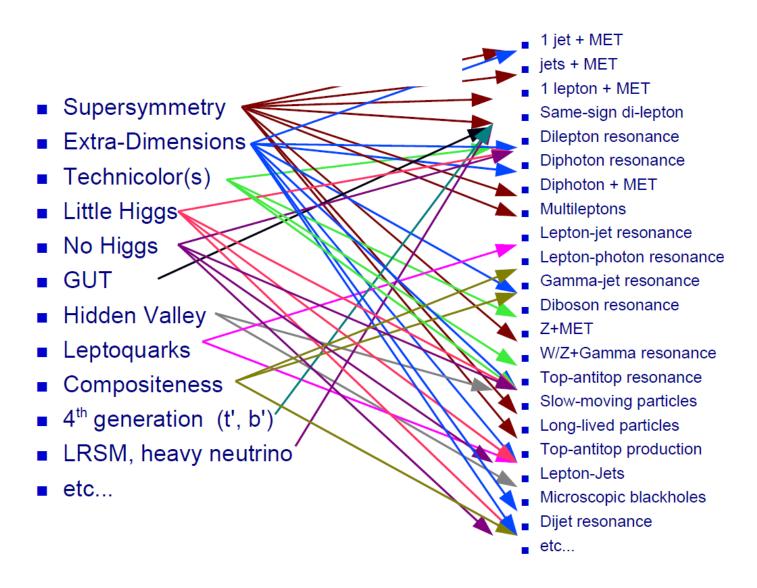
LHC collisions at 40MHz, Level1 Trigger at 100kHz High Level Trigger at 100 Hz


1) Read Out Units (Rus)

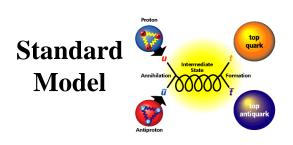
Constructed and tested in collaboration with Greek Industry, 22 RU units (IOPs) Validated the feasibility of the Trigger and DAQ System


2) Global Trigger Processor Emulator – GTPe: 10 Full systems delivered to CMS. Designed, Built, mounted and tested at INPP. FPGA 400kGates (Mixed firmware VHDL and Handel-C) developed at INPP

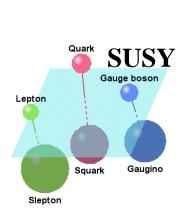
"The Global Trigger Processor Emulator for the CMS experiment" has been published in


IEEE Trans.Nucl.Sci.52:1679-1684,2005

MODELs vs Final States

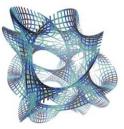


PHYSICS @ CMS



The CMS Group of Demokritos has made <u>marked contributions</u> in the preparation of the experiment **before data taking** as well as in <u>Physics</u> <u>measurements</u> with the **collected data** at 7, 8 & 13 TeV.

The **new data** collected at **13** TeV might open a window to **new physics**.



Over 700 physics publications in peer reviewed journals

It would be extremely helpful if we could receive some support concerning **personnel** (postdocs/students) as well as **travel budget**.

Recent ('16-'18) Analysis Work @ CMS

CMS AN-2018/021 -- Search for high-mass resonances in the di-electron final state with 2017 data

Authors: B. Clerbaux, D. Cockerill, G. Daskalakis, Sh. Elgammal, W. Fang, X. Gao, R. Goldouzian, S. Harper, A.K. Kalsi, Ph. Mine, E. Olaiya, D.

Petyt, J.-F. Schulte, C. Shepherd-Themistocleous

Working Group: EXO

CMS AN-2017/343 -- Search in two-dimensional mass space for T'T' to W'b W' b in the dilepton final state in proton-proton collisions at 13 TeV

Authors: Georgios Anagnostou, Georgios Daskalakis

Working Group: B2G

CMS AN-2017/131 -- Search for general gauge-mediated supersymmetry in final states with two photons and missing transverse

momentum

Authors: A. Askew, A. Reinsvold Hall, M. Hildreth, A. Kyriakis, T. McCauley, G. Paspalaki

Working Group: SUS

CMS AN-2017/346 -- Performance of Flavour Tagging Algorithms at 13 TeV with 2017 data

Authors: Pierguilio Lenzi, Christopher A. Palmer, Joshuha Thomas-Wilsker, Oliver Rieger, Andrzej Novak, Anthony Lefeld, Joseph L. Dulemba,

Sergio Sanchez Navas, Garyfallia Paspalaki, et.al.

Working Group: BTAG

CMS AN-2016/404 -- Search for high mass di-electron resonances with the full 2016 data

Authors: B. Clerbaux, D. Cockerill, G. Daskalakis, Sh. Elgammal, G. Fasanella, W. Fang, X. Gao, R. Goldouzian, S. Harper, Ph. Mine, E. Olaiya, D.

Petyt, A. Randle-Conde, C. Shepherd-Themistocleous

Working Group: EXO

CMS CR-2016/235 -- Top Physics (CMS)

Authors: Georgios Daskalakis for the CMS Collaboration

Categories: PHYSICS

CMS AN-2016/190 -- Search for High Mass Di-Electron Resonances with 2016 Data

Authors: B. Clerbaux, D. Cockerill, G. Daskalakis, Sh. Elgammal, G. Fasanella, W. Fang, X. Gao, R. Goldouzian, S. Harper, Ph. Mine, E. Olaiya, D.

Petyt, A. Randle-Conde, C. Shepherd-Themistocleous

Working Group: EXO

CMS AN-2016/138 -- Combination of the 8 TeV and 13 TeV Z' to Dilepton Limits

Authors: G. Abbiendi, G. Bagliesi, D. Bourilkov, R. Castello, J.E. Chaves, S.S. Chhibra, B. Clerbaux, D. Cockerill, A. Colaleo, R. Cousins, G.

Daskalakis, N. De Filippis, Sh. Elgammal, A. Escalante del Valle, G. Fasanella, W. Fang, A. Florent, V. Giakoumopoulou, R. Goldouzian, S. Harper, et. al.

Working Group: EXO

CMS AN-2016/053 -- PDF Uncertainties for Z' searches at 13 TeV with Electron Pair or Muon Pair Final States

Authors: D. Bourilkov and G. Daskalakis

Working Group: EXO

G. Daskalakis

Contributions & Obligations @ CMS

Physics Analysis (Paper production)

- ... Convener of Physics groups (several Institutions)
- ... Editor of physics papers
- ... Leader of new Analysis efforts
- ... Reviewer of CMS papers before submitted to journals (Analysis Review Committees)

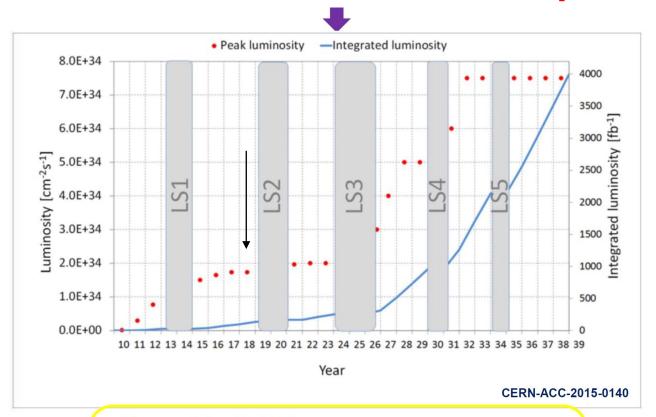
Development of Novel analysis techniques

...to enhance the discovery potential of LHC experiments

Physics Tools development

...to be used by the whole collaboration

ADDITIONAL work/roles:


- Shifts for CMS operation during data taking
- Beam tests: Shifts / Analysis
- Institutional Review of CMS papers before submission

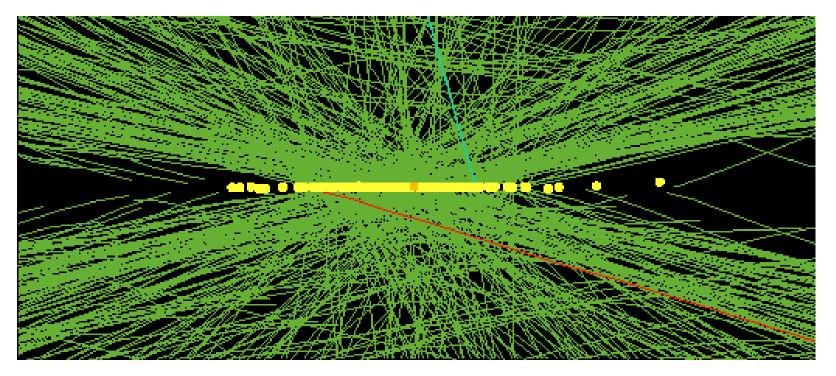
The next decades: HL-LHC

Forecast for LHC and HL-LHC Operation

The goal for HI-LHC:

- > Peak Luminosity: 5.0 (7.5) x 10³⁴ cm⁻² s⁻¹
- ➤ Integrated Luminosity over 10 years: 3000 fb⁻¹
- > PU: 150-200

Challenges @ CMS

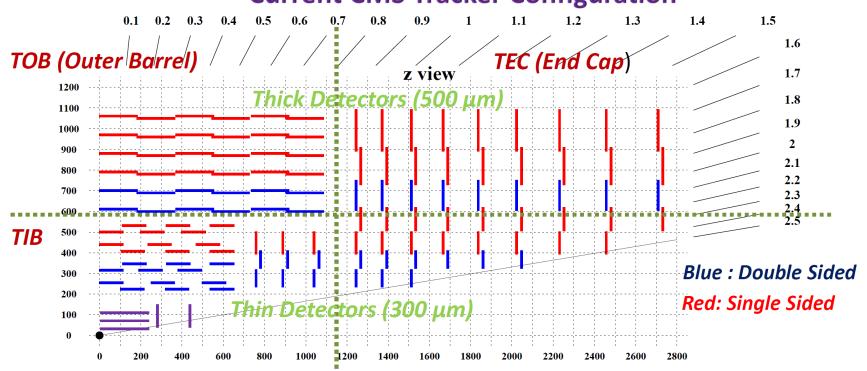


Mean number of pile ups in 2016 ($L=1.5x10^{34}$ cm⁻² s⁻¹) : 53

Mean number of pile ups in HI-LHC ($L=5x10^{34}$ cm⁻² s⁻¹): 140

Mean number of pile ups in HI-LHC ($L=7x10^{34}$ cm⁻² s⁻¹): 200

non "hard" pp collisions, early & late OOT pile ups, extra energy to calorimeters ...


High pile up event with 78 reconstructed vertices

Tracker @ CMS

Sensor Technology: p-in-n

Design occupancy: 1-2%

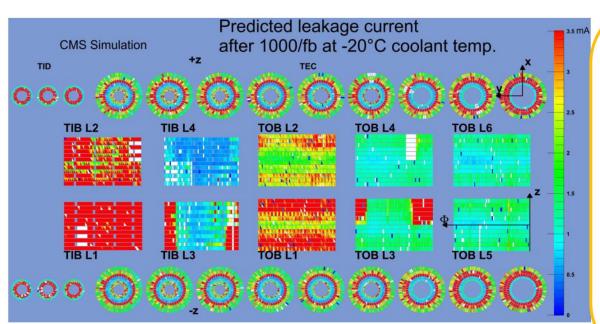
Outer cell size : $\sim 20 \text{cm} \times 100 - 200 \mu \text{m}$

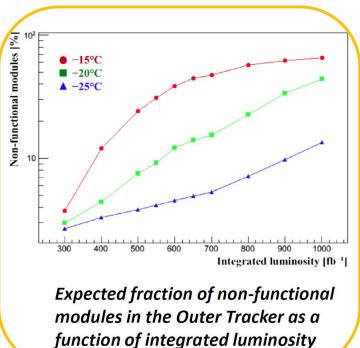
Inner cell side: $\sim 10 \text{ cm } \times 80 \text{ cm}$

Pixel cell size: $100 \mu m^2 \times 150 \mu m^2$

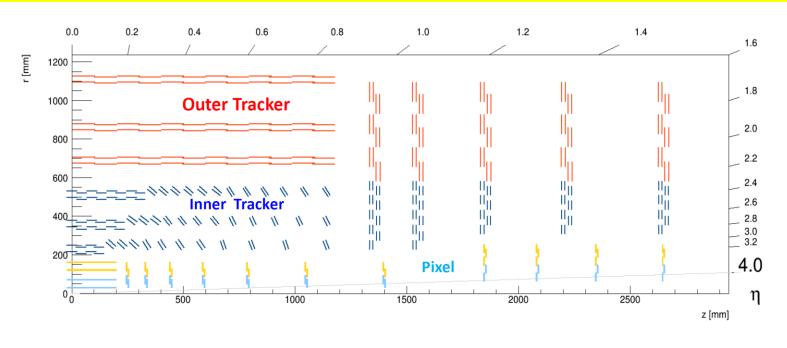
Operation: -15C

Signal / noise: ~20 (above 10 after radiation)

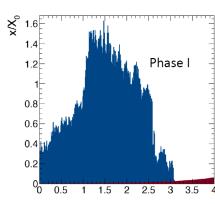

Radiation tolerance: ~1.5 x 10¹⁴

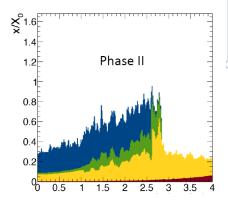

GR_CM5 Meeting

The problem...



... and its solution





Red: Strip-Strip (2S) modules, Blue: Pixel-Strip (PS) modules, Blue light: pixel, orange: pixel

200 μm thick sensors

Outer Tracker based on 2 type modules only

2S strip-strip double-layers ~8400 modules ~34M channels ~155m² CMS Meeting PS strip-strixel double-layers ~7000 modules ~230M channels ~62m²

G. Daskalakis

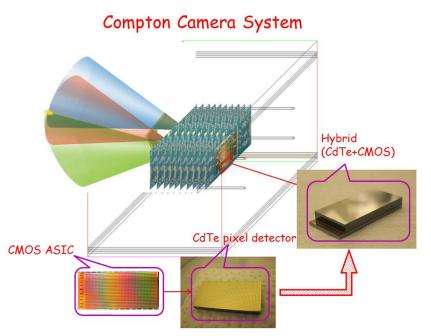
Brainstorming for NCSR-D participation at CERN

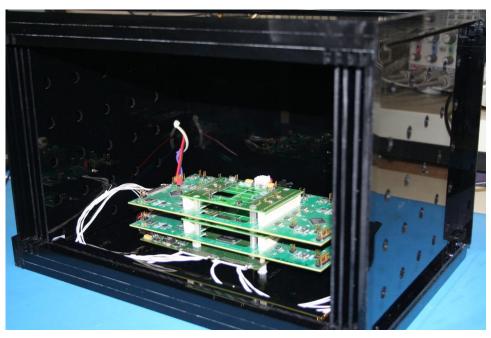
Greek Committments @ CMS

The Phase II CMS Tracker Upgrade:

- 10 years of R&D
- Over 100 MCHF core cost
- 1.4 MCHF foreseen Greek contribution

- Sensor Quality Control
- Process Quality Control





Spin-off Activities

P4DI: Photon 4-dimensional Digital Information hybrid of the COCAE Compton Camera

D. Hatzistratis, G. Theodoratos, I. Kazas, E. Zervakis, D. Loukas, S. Vlassis, and <u>C.P. Lambropoulos</u>

Spin-off Companies

- Athena Semiconductors
- ADVEOS
- European Sensor Systems

CMS INPP Funding 2005-2015

We list below the funded programs that support the INPP/CMS group activities:

- 1) Aristeia 2002 2006 (Competitiveness Call).

```
Post Docs and Technicians = 59.7 k€, Mobility 36.5 k€,
```

Total for INPP/CMS in 2005 – 2006 = **96 k€**

2) "Participation of th Greek Research and Technology Institutes in

International Organizations", 2003 – 2006, Total for INPP/CMS (2005 – 2006) = **73 k€**

3) "Aristeia 2006 – 2008",

Post Docs + Technicians + Equipment = 140 k€, Mobility = 25 k€, Total for INPP/CMS (2006 – 2008) = **165** k€

Total for INPP/CMS (2005 – 2012) = **124 k€** 4) Matching funds

5) "THALIS" (GENESIS @LHC) (2012 - 2015): Total 600 k€,

Total for INPP/CMS (2012 – 2015) = **140** k€

6) "THALIS" (DIBOSON) (2012 - 2015): Total 600 k€,

Total for INPP/CMS (2012 – 2015) = **100** k€ 7) "KRHPIS" ("OPAΣY" E-1784) (2013 – 2015): Total 1,400 k€, for HEP activities

total 670 k€ of which Total for INPP/CMS (2012 – 2015) analysis = **180** k€ Part of the activity of the DIL lab = 229k€, 100k€

Part of the activity of the ELEA lab = 262k€

50k€ 8) TECHNOLOGY/THEPIS/0609(BE)/18 Total for INPP/CMS (2012 – 2015) = **26 k€**

TOTAL = 1,054 k€

Athens 11.4.18

G. Daskalakis

Brainstorming for NCSR-D participation at CERN

CMS INPP Immediate Needs

We urgently need: POSTDOCs & Support for our Ph.D. Students last ones from $KPH\Pi I\Sigma - I$ (end 2015)

Travel Money for CMS Shifts + Presentations + Conferences + Maintenance We need ~ 50.000 euros per Year.

3-4 major CMS Meetings + 7-6 weeks for CMS Shifts (CMS is asking for 12 weeks per author)

5 persons \times 10 weeks \times 1000 euro = 50.000 euros

Support for the CMS Upgrades

OUTCOME:

- **Publications**

- Technology transfer & Spin-offs

- PhDs/MS Thesis (Education)

- Outreach

- INPP/Demokritos Visibility

CMS INPP long-term needs

To make important contributions in the long-term and to meet the operational needs of the experiment, an instrumentation upgrade of our local infrastructure of $\sim 700~000$ euros would be necessary in the next few years.

• Refurbishment of 40 m² as ISO7 (class 10,000) clean room

Storage (RH <30% & T = $20 \text{ °C} \pm 5 \text{ °C}$) Measurements (RH <10% & T = $20 \text{ °C} \pm 2 \text{ °C}$)

- New semiconductor Characterization System
 Keithley 4200-SCS or KEYSIGHT B1500
- New semiconductor Switch Matrix
 Keithley 707B (up to six 8x12 matrix cards)
- New semiconductor wire bonding machine F&K Model G5 64000 (compatibility with CERN)
- New Probe station included in a proposal submitted to the last call from ELIDEK

CMS INPP Future

"This could be the discovery of the century. Depending, of course, on how far down it goes."