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LHC Computing Grid /
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The Standard Model

2

Well demonstrated effective model
We can predict most of the observations

We can use a large amount of simulation
02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant




(] Size Of The Challenge

¢ 7 TeV CMS measurement (L < 5.0 fb')
$ 8 TeV CMS measurement (L < 19.6 fb™)
— 7 TeV Theory prediction

— 8 TeV Theory prediction
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Predictions agree with observation
Need to collect rare events from a large amount of data

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 7



¢ CMS Detector

CMS DETECTOR

Tatal weight : 14,000 tonnes
Cwarall diameter : 150 m

Overall length 287 m STEEL RETURN YOKE
Magnetic ﬁgld 38T 12,500 tonnes SILICON TRACKERS

Pixed (100x150 pm) -16m?® -66M channels
Microstrips (80x180 pm) -200m? -9.6M channels

SUPERCONDUCTING SOLENOID
Miabaum titanium coil carrying -18,000A

MUON CHAMBERS
Barrel; 250 Dnft Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m® ~ 137,000 channels

FORWARD CALORIMETER
Steel + Quanz fibers 2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)

=76,000 scintaling POWO, crystals »
s \ :

HADRON CALORIMETER (HCAL) 5 .
Brass + Plastic scintillatar - 7,000 channals » _ #

e
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¢ CMS Readout

CMS DETECTOR

Total weight ;14,000 tonnes

Overall diamater : 15.0 m STEEL RETURN YOKE

Overall length ;287 m

Magnetic field 38T 12,500 tonnes SILICON TRACKERS
Pixed (100x150 prm) - 16m?® ~-68M channels
Micros trips (B0x180 pm) -200m° ~8.6M channels

SUPERCONDUCTING SOLEMOID
Meobaum titanium coil carrying 18,0004

MUON CHAMBERS
3 Barrel: 250 Daft Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistve Plate Chambers

PHESHOWEH
Silicon strips ~16m® ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibers -2 000 Channels

CRYSTAL
ELECTROMAGNETIC
ChLOHIMETE R IEC.HL!I

5] nblating or il

HADFIDN CALORIMETER [l 1C.|5.L:|
Brass + Plaslic scintillator - 7,000 cha

Highly heterogeneous system
Raw data is 100M channels
sampled every 25 ns : 1Pb/s
S50EB per day in readout and

online processing.
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Kate (nz) LEVEL-1 Trigger 40 MHz
QED - T Hardwired processors (ASIC, FPGA)

MASSIVE PARALLEL
/ Pipelined Logic Systems
102 ]
A1 I
L wi: e 001-1sec —
10+ R T A A A A
i ” R A
Top -
10° S e NE-NEREY
Higgs :
0 . AR A
N 8 HIGH LEVEL TRIGGERS 100 kHz
L = et Standard processor FARMs
- 0 (=] 10+ 25 ns - s ms sec
o o o = T T T T T 1
< - - 10 10 10* 107 10°

Available processing time

From Big Data to Smart Data
with ultra fast decision
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TierO

Nk _ CERN
e Computer Center
A Tape Robots

NS

() Computing Grid

s

—

Hundreds of computer centers (100-10k cores per site)
* Increased use as a cloud resources (any job anywhere)
 Increasing use of additional cloud and HPC resource

* Real time data processing at TierO

« Data and Simulation production everywhere

« High bandwidth networks between disk storage

e >200k cores pledged world-wide for CMS computing
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Why Machine Learning
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Why Deep Learning

« LHC Data Processing may use deep learning methods in many aspects
» Several class of LHC Data analysis make use of classifier for signal versus
background discrimination.
v Use of BDT on high level features
v Increasing use of MLP-like deep neural net

* Deep learning has delivered super-human performance at certain class of tasks
(computer vision, speech recognition, ...)
v Use of convolutional neural net, recurrent topologies, long-short-term-
memory cells, ...
* Deep learning has advantage at training on “raw” data
- Several levels of data distillation in LHC data processing
* Neural net computation is highly parallelizable
> Better use of GP-GPU than regular HEP algorithms

« Complex systems to operate, complex signal to analyze
~ Qver-come challenges of data density and volume
- Qver-come challenges of data and detector complexity
- Qver-come challenges of ultra-fast decision

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 14



Where Deep Learning

» Detector and apparatus control
 Computing GRID, Center & network control
* Operation anomaly detection

 Fast triggering on object or full events
« Fast approximate algorithms

* Rare event detection

e Automated data certification

e Faster simulation software

* Finer even selection

 Better object identification

* More precise event reconstruction

* More robust measurements

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 15



Computing with and for ML

For
Computing resources need to be set to enable machine
learning and in particular deep learning
> Heavy training
- Inference in commodity hardware
> Fast inference on dedicated hardware

With
The LHC computing system is a very complex one, with
an even bigger data challenge in horizon 2025
> ML to optimize data placement
> ML to model the system
> RL to take control of the system

These slides are mixture of both, organized in the three
topics : data, resource and software.
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Access to Data
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Data Access Patterns

» Analysis access pattern
> Many users accessing the same set of datasets
> Balance of cpu-bound and 1/O-bound
» Can mostly afford a one-off read from remote

* Model Training access pattern
> A dataset used for training over many epochs
> Full dataset read multiple times over in one pass
> Needs a local storage copy, even a node copy

> Some of the grid computing paradigms do not support
this natively

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 18



Data Formats

The landscape of generic containers

By “generic,” | mean file formats that define general structures that we
can specialize for particular kinds of data, like XML and JSON, but we're
interested in binary formats with schemas for efficient numerical storage.

(what it means)

flat tables nested structures

HDF5

o) ] Arrays of : Varlength of Avro, Thrift,

o row-wise numbers : Compounds ProtoBuf
recarray

= :

- TNtuple : TTree Arrow

S (in memory)

2 columnar '

~ q

SQL '99  SQL '03

Pivarski at https://indico.cern.ch/event/613842/
02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 19
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Other big-data approaches possible ?

GPU-accelerated sqlite-database, fast indexing,

hyper-compression

NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant
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Data Placement

Problem statement
= 100PB of storage non uniformly distributed over 100
sites
= 10s of thousand of analysis datasets or variable
importance
= Analysis software not only /O bound

> Locate the dataset on disks over sites so that
analyzers can ran on them in short turnaround time.

e The current solution is to measure popularity of

samples, replicate accordingly, and load balance disk
occupation.

e Can we actually predict the relevance of samples
based on current utilization's trend ?

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 21



Data Popularity

Dataset popularity predictions

Classifiers validation TPR (%) Classifiers validation TNR (%)
100.00% [ T T T T 5 100.00% F ¢ T T $ 9 e g
W ¢ | Performed studies with
‘ : B various classifiers:
N \ | RandomForest, SGD,
60.00% |- | se0.00%| . : 1 XG b O O St
Found similar results with
SparkML
e—e XGBClassifier (95.25%) o—e XGBClassifier (98.35%)
1 e oo | (53 e onsos | [

FELESSS AAEESSS  TNR=TN/TN+FP)

Y S S

Diata tiot TPR TNR FP FN
; AOD 0.0720.05 0.09£0.02 0.00520.011 0.015£0.029
MINIAOD were introduced AODSIM 0.9340.13 0.9940.02 0.008£0.016 0.02140.045
e MINIAOD 0.111032 0992002 0.01450.026 0.00150.007
in mid 2014 —-» MINIAODSIM  0.49+0.48 0.9940.02 0.009+0.016 0.0070.031
USER 0031015 0031002 001450021 001110003

Kuznetsov, Bonacorsi
https://arxiv.org/abs/1602.07226
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¢ HC Networking
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-DFN- f.’ == -, CBPF |s(ﬁn£§;\| y- or link/VLAN provider —==gaillll Communication links: 1, 10, 20/30/40, and 100Gb/s
e SIvez & |: =7 L See http://Ihcone.net for details.
A

HEP is a privilege customer of networks
Need to use it efficiently to remain this way
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¢

Software Defined Network

App App
Controller (PC) ’

OpenFlow
Switch

OpenFlow OpenFlow
Switch Switch

New paradigm adopted by research and education
network as well as industry
Enables network control by applications
Programmatically define the network functions
Increase use of machine learning techniques
OpenFlow is a standard protocol between controller
and network devices

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant
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9 Caching Network

A quick summary of NDN: 3 simple ideas

DTN, fast loss recovery

in-network caching

Building block
for application
security

Semantically
meaningful naming
enables reasoning
about the system

securing data

naming data directly

an scalable, secure,
resilient data plane

multicast ability to detect and
delivery route around faulty nodes

statefu
forwarding
dlane

In addition:

* Automating security
management /’ multipath Interest forwarding, multicast data delivery

* distributed data set " _ _
synchronization closed feedback loop (path selection, congestion control)

Lixia Zhang (UCLA)

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 25
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Access to Software
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Software in HEP

« ROOT-TMVA has made a lot of changes in recent
years
> Bridge to python, scikit-learn, R, ...
> Implementation of deep learning
> GPU support, mpi, ...

» Software is commonly distributed over cvmfs
(CERN virtual machine file system)
> Need only to install cvmfs
« Not always the bleeding edge versions

* Many solutions for bridges
> Docker, shifter, singularity, ...

» Bleeding edge methods are in pytorch, tensorflow,
keras, ... how can both ends meet ?

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 27



¢

Arrow/
R Feather
DataFrames

The data conversion throw bridges between
root and industry software

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 28



On-Time Inference

Problem Statement
» Experiments are running within their C++ framework,
running over the WLCG on comodity hardware
* Most training libraries are based on python, using GP-
GPU

> How to run inference efficiently of the trained models

Current Solutions
« C++ implementation of most operators
> https://github.com/riga/tfdeploy
https://gitlab.cern.ch/mrieger/CMSSW-DNN
> https://github.com/lwtnn/lwtnn
v Work for most tensorflow and keras models
* Tensorflow C++ backend in CMSSW

Can this be integrated better with the experiment framework ?

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 29
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Access to Resources
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Working with Notebook

Data Analysis as a Service

* Platform independent: only with a web browser
— Analyse data via the Notebook web interface

— No need to install and configure software
* Calculations, input and results “in the cloud”

* Allow easy sharing of scientific results: plots, data, code =3
— Storage is crucial, both mass (EOS) and synchronised (CERNBox) Ju_p-yt/er

» Simplify teaching of data processing and programming N
* Eases analysis reproducibility and documentation

¢ C++,Python and other languages or analysis “ecosystems”
— Interfaced to widely adopted scientific libraries
— e.g. Pandas, Numpy, ROOT, matplotlib, ...

https://tinyurl.com/yd5k3cp9

https://swan.web.cern.ch/

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 31
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The Architecture

& & & wmren

o

= Jupyter Web Portal = jupyterhub n
v

Notebook s :

Container Container Scheduler openstack

d*ocker cjcjc)

https://tinyurl.com/yaxwgqgj
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CMS~|

GPU on the GRID

UNIVERSITY OF
NOTRE DAME

Technology behind CMS-Connect

Based on CIl Connect Platform

ﬂi c::nnect

ci-connect.net

[

\

*Globus Platform
[ClLogon + InCommon + X509]
e |dentity Management.
e Groups, Projects.

| ogin Host

% eAuto provisioning of user accounts.
Amazon & eConnecting CPU/GPU resources
I Google clouds -
eHTCondor.
» :..J_ eDistributed Data Access
2 :J%-_) eXRootD, Globus access, http.

eDistributed Software
scvmfs

Cl CiLogon gg globus

. cpmr o https://goo.gl/AJ7VQt
&5 XRootD HTICondoF o
SR CMS Connect activity in the last 60 days

http://connect.uscms.org/
2.592 Mil

Total jobs

1.722 Mil

source
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('] Training As a Service

b

Working on a D-Wave il

v/

g

i

* Web Interface to post the
Y problem settings (Hp).

;mw;m:_:f{ _| » Asynchronous processing.
"‘l W B |« solution is made available
— ' for download. .
el > Deep Learning
i . Distributed library fo_r tralnlng with SGD
B ‘ performing embedding
E i + Retain full intellectual has a very clear I/O
Dil tr:ur:s;e‘llzlrd'gg ator I = ‘z:;h_:\_ property for the user
Shielded Enclosure Control Subsystems 4 . Er?éli\r(eatlﬁgt ;eSM%g%:é?IEmeit
‘- and Servers eV u |
> D-Wave processor as a > Can be abstracted
service away from the user

u l--"‘ﬁL‘[.J[‘li.‘l’“.‘Pﬁi.l}(’l- D=:uaue D-Wave Classifier, LAL Seminar, J.-R. Vlimant > AIIOWS for a SeCU re
Southern California 02/22/18 2 .
entry point to large

resource, like HPC
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Distributed Training

1) Compute gradient,
send to Master 2) Update network

E W — W — VQ(w) weights
https://github.com/JoeriHermans/dist-keras
https://github.com/duanders/mpi_learn

3) Send new weights to Worker ¢

 All deep learning frameworks have developed their
own way to do this (elastic or reduce)

* Recent results in scaling up at NERSC

e Can boost science with utilization of HPC

e Still very much in development

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 35
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e N
CURRENT STATUS
.
)
Option 2 mpirun
v
x
@ Baysian optimization
: assign skopt to 1 coordinator and g
MEREN workers in multiple processing block
Coordinator Processing Block
(process 0} - (all others)
WIS B IR while True:
wait () R
b : #MPIManager -> train
#make model config Sendl
assign ()

#send to communicator
#send to block

Nguyen, Pierini, Anderson, Carta, Vlimant
https://indico.cern.ch/event/683349

NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant
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» Optimization of each component independently might not lead
to the global optimum
* Need to consider the system as a whole

> Need for a simulator or an environment for exploration

* Model single element metrics
* Reinforcement learning to control the system's components

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 37



Resource Utilization

CMS metadata on HDFS «Metadata from al

workflow management,
job scheduler, data

+ CMS data availability on HDFS: total size 32+ TB management services on
+ AAA (JSON) user logs accessing XrootD servers, 10TB HDFS at CERN
+ EOS (JSON) user logs accesses CERN EOS, 4.5TB
# HTCondor (JSON) CMS Jobs logs, 7.6 TB * Lots of possible insight to
+ FTS (JSON) CMS FTS logs, 3.5 TB be gain from these large

. datasets
+ CMSSW (Avro) CMSSW jobs, 0.5TB

+ JobMonitoring (Avro) CMS Dashboard DB snapshot, 0.1TB N Contrl butlon tO |m prove

+ WMArchive (Avro) CMS Workflows archive, 3TB monitorin g

+ ASO (CSV) CMS ASO accesses, 0.05TB > Contribution on

+ DBS (CSV) CMS Data Bookkeeping snapshot, 1.1TB understandin g how to
+ PhEDEx (CSV) CMS data location DB snapshot, 2.5TB operate the systems

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 38



Summary

e Lots of potential applications of deep
earning within the big data pipeline of
_HC data.

» Several potential projects to contribute to
providing resources/data/software to
physicists at the LHC.

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 39
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A rather large set of
backup slides for reference
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Tracks Pattern Recognition

From sparse 2D/3D points reconstruct the path of a charged particle
lterative process using combinatorics, Kalman Fitting and Filtering
Most CPU intensive part of the event reconstruction (~10s /event)
Computation time scales ~quadratically with number of interactions
Any fraction of patterns that can identified faster will make a difference

v
3 W e
- IR
G
%
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Vertex ldentification
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Energy Pattern Recognition

 Particles emitted from the interaction point are stopped in
calorimeters (except for muons, neutrinos, ...)

« Pattern of energy deposition is somehow characteristic

 Classical, physics driven methods have been used to recollect
the total energy and identify the particle

 Efficient classifiers are being used on derived features

 Room for improvement in deriving the low level features

 How to deal with so many overlapping collisions

CMS Experi

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 43



¢ What is Jet

Microscopic Scale Detector Scale

/

« Partons (quark ,gluons) have to be in pairs or triplets in nature
« Parton gets “suited” with partners as propagating away from creation
e The result is a “jet” of particles in the direction of the original parton

* The jet collimation depends on the energy of the initial parton
02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 44



¢ A Journey Through Matter

0m im 2 im 4m Sm 6m m
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
— = = = Neutral Hadron (e.g. Neutron) Mr
----- Photon Il
18 |
( T [
silicon
Tracker
_ Electromagnetic 1 %
}_I! I '] Calorimeter i ;
3
Hadron Superconducting A o
Calorimeter Solenoid %
Iron return yoke intersparsed | '
Transverse slice with Muon chambers
through CMS “lis
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¢ Wh n Event

LY/

.
&
[

Beam of partons

Radiation from incoming partons
Primary hard scatter

Radiation from outgoing partons
Typical proton-proton Hadronization

collision

Add 40 such on top of each other.
Up to 200 such overlay in the horizon 2025
One event every 25 ns / 40MHz
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Why Deep Learning

« LHC Data Processing may use deep learning methods in many aspects
« Several class of LHC Data analysis make use of classifier for signal versus
background discrimination.
v Use of BDT on high level features
v Increasing use of MLP-like deep neural net

* Deep learning has delivered super-human performance at certain class of tasks
(computer vision, speech recognition, ...)
v Use of convolutional neural net, recurrent topologies, long-short-term-memory
cells, ...
* Deep learning has advantage at training on “raw” data
> Several levels of data distillation in LHC data processing
* Neural net computation is highly parallelizable
> Better use of GP-GPU than regular HEP algorithms

« Complex systems to operate, complex signal to analyze
> Over-come challenges of data density and volume
> Over-come challenges of data and detector complexity
> Qver-come challenges of ultra-fast decision

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 47



Where Deep Learning

» Detector and apparatus control
 Computing GRID, Center & network control
* Operation anomaly detection

 Fast triggering on object or full events
« Fast approximate algorithms

* Rare event detection

e Automated data certification

e Faster simulation software

* Finer even selection

 Better object identification

* More precise event reconstruction

* More robust measurements
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¢ Machine Learning in a Nutshell

“The science of getting computers to act without being
explicitly programmed” - Andrew Ng (Stanford/Coursera)

part of standard computer science curriculum since the 90s

* inferring knowledge from data -

generalizing to unseen data

» usually no parametric
model assumptions

 emphasizing the computational
challenges

Balazs Kegl, CERN 2014
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What Machine Learning

 Classification and regression

* Deep neural nets (CNN, RNN, ...)
* Unsupervised clustering

» Control theory

» Re-inforcement learning

» Generative models

* Density estimators

e Interaction networks

* Graph networks
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Application to Intensity and
Energy Frontiers
(a selected few)

Data Science in HEP Series
http://cern.ch/DataScienceLHC2015
https://indico.hep.caltech.edu/indico/event/102
http://dshep.fnal.gov/

Connecting the Dots Series
https://indico.hephy.oeaw.ac.at/event/86/
https://ctdwit2017.1al.in2p3.fr/

Hammers and Nails
https://www.weizmann.ac.il/conferences/SRitp/Summer2017/
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NOVA Event Classification

3D schematic of

View from the top

Particle 1

NOvA particle detector S = ; B H
Interaction 0| = 111 : = ; i
Point ! | 1 |
| | | |
. HHAE - H A | | Particle 2
- . o ] = . | - =
Neutrino N T » | I 1
from 1 H = | | Particle 3
Fermilab B D =E = 1 A o
| e se s we s e eswE s
PVC cell filled with
liquid scintillator
View from the side Particle 2
H | Particle 1
Interaction | -
Point \:
Neutrino ;e:t:i:l: e t:
from from -
Fermilab Fermilab -
Particle 3
CVN Selection Value | v, sig | Totbkg | NC | v, CC | Beam v, | Signal Efficiency | Purity
Contained Events = 88.4 509.0 | 344.8 | 132.1 321 - 14.8%
s/ Vb opt 0.94 434 6.7 2.1 0.4 | 43 49.1% 86.6%
sf{ Vs + b opt 0.72 58.8 18.6 103 21 | 6.1 66.4% 76.0%
CVN Selection Value | v, sig | Tot bkg NC Appeared v, | Beam v, | Signal Efficiency | Purity
Contained Events - 355.5 | 1269.8 | 1099.7 135.7 344 - 21.9%
s/ Vb opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%
s/ Vs +bopt 0.45 206.8 7.6 6.8 0.7 0.1 58.2% 96.4%

» 40% Better Electron Efficiency for same background.

02/22/18

http://arxiv.org/pdf/1604.01444.pdf
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ProtoDUNE simulation,
LArSoft 7

T+ 2.5 GeV/c

5

{'-\'_
>
N

ProtoDUNE simulation,
LArSoft

T+2.5 GeV/c

CNN output: MC truth:
EM-like (blue) / track-like (red)  EM-like (green) / track-like (red)

input: 2D ADC
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Ground truth muon
decay vertex

P

CNN muon vertex
identification

K

LArSoft sim/reco

480 490 500 510 520 530 540

¢ Decay Point Identifier

250

200

150

100

50

Distance: MC-truth decay point to the point
selected by reconstruction

red: point found with CNN
gray: standard tracking vertex

ProtoDUNE simulation,
work in progress

VtXye — ViXgeeo [€M]

2 4 6 8 10 12 14

* CNN slightly outperform the
classical approach

* Much less complication in
programming the vertex finding
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Particle Jet Identification

Top Tagger arXiv: 1501.05968 Almeida, Backovic, Cliche, Lee, Perelstein

|

Neural
net

[ QCD Jet
Bl OURSONIN NN 1 Top
Madgraph5 + Pythia :
I anti = b, R=1.0
- pr = 1100 — 1200 GeV
E 4] omew0-206Gev
2
2
o
= k. P PP PP
5 3
<
2h e
ot et T,
8.0 0.2 0.4 0.6 0.8 1.0
0

VAN

W tagger arXiv: 1511.05190, Oliveira, Kagan, Mackey, Nachman, Schwartzman

Convolved

Pythia 8, Vs =13 TeV

S0 <p r."{}r'\" < 300 GeV, 65 < mass/'GeV < 95

Convolutions Feature Layers ’

s W1to QCD

discrimination —

100 Maxout

Train

— Convnet

1/(Background Efficiency)
o>
=y

- Random

50f-

Max-Pooling

W'— WZevent \/ e S g~ - - T O
8‘2 e .0|'4 Pl v ,Etg-.—--. o
Hepeat Signal Efficiency /
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Interaction Network For Jet-id

Graph G = (O, R), objects connected by relations
Interaction Network

¢0(a(G, X, or(m(G))))

Tn’(G) — B p— {bk}kzl,,,j\fR (I/(G,X, E) —_ C = {Cj}J:] No
fr(br) = ex fo(cj) = Pj
or(B) = E = {ex}r=1..Nz ¢o(C) = P = {pj}j=1..No

e ¢r predicts relational effects
e ¢p predicts effect on objects
e Allows for longer-range interactions than a standard CNN

e Learning the relation
between particles
(gravity, spring, wall, ...)

Interaction Networks for Learning about _ _
Objects, Relations and Physics > (on-gomg Work) App||ed

P. W. Battaglia, R. Pascanu, M. Lai, D. . 4 e : :
Rezende, K. Kavukcuoglu to jet identification using

https://arxiv.org/abs/1612.00222 all particles it is made of

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 56


https://arxiv.org/abs/1612.00222

¢ 3D Calorimetry Imaging

100GeV Photon |~
: e : J|- 0
T I_ . -|~ 5
J|~ 10
i o &
AT L 0
: : | ]
- T 15
2% :\\ 5
’ 10)\15\ 0

LCD Calorimeter configuration
http://lcd.web.cern.ch

5x5 mm Pixel calorimeter =
28 layer deep for Ecal
70 layer deep for Hcal
Photon and pion particle gun ==
Classification models N

1 %o
Tue Fozlifes Tate
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9 3D Calorimetry Regression

Photons
T T T T T
500 10°
. input: | (None, 25, 25, 25) . - ) input: | (None, 5, 5, 60) i
MOdel input_1: InputLayer il | (ont ;252355 input_2: InputLayer N
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A e output: | (None, 25,25, 25, 1) esare S Retae output: | (None, 5, 5, 60, 1) %
l l ) 102
input: | (None, 25, 25, 25. input: | (None, 5. 5, 60, =
‘con\-oluuon;d,l:cc.msr) put:_| (N 250 D) convolution3d_2: Conv3D { uu:“:ﬁ I ((;mc':_: ;: II[:) } g 300 3
c
e MSE B
maxpooling3d_1: MaxPooling3D (one, 22 R0 maxpooling3d_2: MaxPooling3D e | (o 4,16 3100 2
® Adam R B & [output: | (Nome, 11, 11, 11, 3) NS & [output: | (None, 2, 2. 27, 10) % 200 o
. . @ .
optimizer \ _ & 10
flatten_1: Flatten opite | CRone TLALC L) flatten_2: Flatten
e Conv.l ayer outpu: | (None, 3993) output: | (None, 1080)
& i 100 4
activation Ty =
. — | input. | [(None, 3993), (None, 1080)] ‘
function: T oupur: | (None, 5073) | :
l 0 I | | i 1 o
ReLU s 1: Do | 1PE| Mone, 5073) 0 100 200 300 400 500 10
e Dense Iayer — ““l'l’“'i (None, 1000) Target energy (GeV)
actlvgtlon | T . __Energy resolution
f|:|nct|0n: output: | (None, 1000) a im _22et0 4 8 08¢ 01+ 1.;32;+1l2
linear ol VB |
energy: Dense
5 - -
—
>
v 4| |
Q
[ ngn ] o
Calibrate the energy deposition using qlsaf |
. | &
convolution neural nets i
2 - .
l - -
0 1 1 1 1 1
0 100 200 300 400 500 600

Energy
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_
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T
T
- ’65

g

g

o772

_
< - =

Preshower (ES)

Hexagonal cells

The images we are dealing with are
not as regular as standard images.
Need for specific new treatment and
methods to feed neural nets

. o SR

Variable Depth Segmentation
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¢

Calorimeter GAN

-
OUTPUTS - — INPUTS
. [ (ic:rcatenatlon é
Minibatch :
Discrimination T
Difference Lk
—A>¢e? —¢ Etot E
=l T /ey
CaloGAN
M. Paganini, L. de Oliveira, B. Nachman
https://arxiv.org/abs/1705.02355 ”M ‘
‘ I
Complex generative adversarial model 39 )
based on previous 2D GAN L

High reward application to fast
simulation for the ATLAS experiment

02/22/18
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(] 3D GAN

ader Sqmce =300

— Single cell response
3 H.I{ L“E"w_ﬂ =3 .08
‘ ‘M‘" =r o W i B -
o H¢ i
e Tl N
GENERATOR Sl NNTROT . SN et g s
sy : L ; L
i =5 e o '
“3} i A i ::
N;H [ g4 2755 | lz
m;} t MJ E&ﬁﬂ e
- X
S O:EH ‘Wi_ J(#
| E E
x j . mfp“m ﬁ*fﬁ .
\ -

DISCRIMINATOR

Analysis

Simulation Reconstruction
Comparison

Work in progress base on previous t S
work on 2D GAN ot -

Aim at accelerating part of the GeantV % s

simulation

Reconstructed

Digits A
points

.

Rawgdata Processing
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¥ Collision Event Classification

(‘qcd’, 'ttbar') Accuracy vs Epoch
-ty I®

Va
V= Uy ;Um¢”yavze(—1=1)s (l)
v --",”:" A .
0.740 G A \/ v\

(3)

training accuracy
— Lorentz validation accuracy

Lorentz_w training accuracy
t

gl —YBn —yBny —yBn:
_ —'Yﬁﬂ.x 1 + ("}‘ - l)ﬂg ('Y - 1)?’1xﬂy (’Y - 1)?’135?’12: - w validation accuracy
B(v) - = = Ctrl training accuracy

Accuracy
e e

2 v n
_'ngny (’Y - 1)nyn$ 1 + (’T - 1)n’y (’T - l)“ynz ; — Ctrl validation accuracy
'
—vBnz (v—1)nzng (y—1)nzny 14 (v— 1}n§ y ctrl_d trainin g accurac y
(4) i Ctrl_d validation accuracy
xxx Lorentz best training accuracy = 0.7488
000 Lorentz best validation accuracy = 0.7407
xx Lorentz_w best training accuracy = 0.7514
000 Lorentz_w best validation accuracy = 0.7436
’ - 0720 b 2 BEt =

, X = 'HJB(V)X (0) 1 x¥x Ctrl be: tlral.nlnst accuracy = 0.7477

000 Ctrl best validation accuracy = 0.7375
Ctrl_d best training accuracy = 0.7455

Ctrl_d best validation accuracy = 0.7243

F] 0 40 50 60 70
Epoch

 Full event classification using reconstructed particle 4-vectors
* Recurrent neural nets, Long short term memory cells

» Dedicated layer with Lorentz boosting
» Step toward event classification with lower level data : low

level feature as opposed to analysis level variables
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¥ Recurrent/Recursive Networks

Classifier

Euent embedding

vi(t1) v(t:) v(tar)
™ (@) \

—) ()
hi* (t1) by (t2) B (bar) /
AN F P Unrolled RNN
- 5 g = TATOALE
AR AN VAN B | LA 4 & 4 auy
C R T 5 |
2l.lu.nitwc‘tu1'

Fully Connected
+

i i
| | 1 i
oA 1 1 | | | I
s —_—
| i i | | i I

QCD-Aware Recursive Neural Networks e g =
for Jet Physics. % l
Louppe, Cho, Becot, Cranmer = AN | E| 8 5] E] Z
https://arxiv.org/abs/1702.00748 p— STE| 1 [E] |2 g

erge ;

.4 ordered by 130l ___/ yet

Identif cation of Jets Containing b-
Hadrons with Recurrent Neural Networks
at the ATLAS Experiment
http://cds.cern.ch/record/2255226
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¥ Challenge in Natural Ordering

Tpruject'u:uns

(activities x weights) 7 O

activities
(vectors of values)

the cat

Text have natural
order. RNN/LSTM
can correlate the
information to
internal
representation

02/22/18

There is underlying
order in collision
events. Smeared
through timing
resolution. No natural

2 order in observable

> Learn how to sort
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¢ Learn How To Sort

Recurrent Neural Networks (RNNs):
-Long Short-Term Memory (LSTM)

-Gated Recurrent Unit (GRU) e Custom:
— & = | |
B B, & DIy By iy Do R=WI1|: : |+W2|D Dy,
| T Jod ‘:;‘ I :m;Emb‘ed‘ding ‘ I 1 - E n - | |
P S R W ————— Where W7, W5 are trainable (nzn) matricies
X - X Xoa e X,
Encoder RNN Dec"dler RN « Ptr_Net(https://arxiv.org/pdf/1506.03134.pdf)
- - R = thcmh(I/Vle‘7 + Wad;) j€(1,...n)
lE I FT; j... Softm;del ‘ A/(‘ =
1 O > i Ty S N—
: R _” U _»XSO’Pted—P Xl.S'o'r'ted,' Xégorted . ‘_ . XSOTted | =
- o
X f Classification RNN tanh(WlE +WaD) R

Sorting and “soft” sorting models can be
concurrently trained with recurrent networks
Expensive and tricky to train
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* Perfect example of pattern recognition

» Data sparsity is not common in image processing

e Several angles to tackle the problem. Deep Kalman filter,
RNN to learn dynamics, sparse image processing, ...

» Kaggle challenge in preparation
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HEP.TrkX Project

https://heptrkx.github.io/

—..+.-

-+-
.

U
\_

= target 2
- cand 2

- Ccand 3

all hits in data =
target 0
cand 0
target 1
cand 1

target 3

target 4

and COMP HEP. Part of HEP CCE.

L BNL, Fermilab, Caltech consortium
> Mission

Explore deep learning techniques

”’ﬁ’\ "\ Pilot project funded by DOE ASCR
\

cand 4 L

n-seeded Track Reconstruction

Getector /ai'er & 3

\ Seeded Track Reconstruction )

Conference Talks

for charged particle track
reconstruction

Dense ][ LSTMHSIopes and InterceptsJ

Conv. Layers

Dense ][ LSTM H[_C,O,VA Matrix Parameters]

Model prediction

Track Parameter Estimation
\_ J

https://indico.cern.ch/event/577003/contributions/2476580/
https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5393,Y
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https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5393,Y
https://indico.cern.ch/event/567550/contributions/2629737/

Seeded Pattern Prediction

 Hits on first 3 layers are used as seed
 Predict the position of the rest of the hits on all layers

Seed hits

j Input

Try to 40
reconstruct
this track \_”ﬁ
= o
10
0
0 10 20 30 40
Layer
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LSTM = Kalman Filter

Output detector layer
predictions

Target track

0

softmax activations

Input detector layer
arrays

Target track

NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant
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¥ Un-binned Seeded Tracking

+ Seed
—— Target
0. 75n -
/ T
/ —— Target i
/’/ Seed v !
f L6 Seed | \ S ask
J e 4_QL —— Target ‘ \
1.0m | « Seed |oon
—— Target |
\ « Seed 3‘
\‘ —— Target /
‘\ *« Seed
\ —— Target
\\ + Seed
\ —— Target
* Seed
1251 —— Target
R " e Seed
TSRt il —— Target
- + Seed
sl —— Target

Hit position input not as an image
but as a sequence of positions
Overcomes the scalability issue
Analog to Kalman Filter approach

Accuracy of Track Candidate Summary (Standard = 0.6)

1.0

0.8

o
o

Accuracy

o
~

0.2

0.0

aligitionModel 1
validitionModel 2
acCuaigitionModel 3
accyaiigiionModel 4
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T
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The Number of Tracks
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¢  Prediction Track Covariance

[Dense LSTM I—PI Slopes and Intercepts I
-’[Conv, Layers
Dense LSTM]—P[QOV. Matrix Parameter_;]

Model is modified to predict a covariance matrix
for which there is no ground truth, but is used with
the modified loss function

L(z,y) =log|Z| + (y — f(x) =" (y - f(x))
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9 Track Parameters Uncertainty

Input Model prediction

Pixel

Pixel

Layer

Layer

Representation of track
slope, intersect and
respective uncertainties
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Hopfield Network

1
E=-> (Z} WSS, —2 E 9,.5,) .

/
- Not a neural network per say — =
* Fully-connected graph | // @ <

» Connections pruned based /7/ / ( ) N\
on an enery minimisation y \‘ AN
model NN

A
Fig. 4. Tracks in the ALEPH TPC reconstructed with a Hopfield
net [13].

https://link.springer.com/chapter/10.1007/3-540-61510-5_ 1
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Learn With Uncertainty

e Despite the precision of the SM, we still have to deal with:

m statistical uncertainties (inherent fluctuations)
m systematic uncertainties (the known unknowns of the model)

e Uncertainty is usually formulated as nuisance parameters v.

Classifier £

FLGD,
X —
i X1 )
: J(x1,x2,0)
X2
8 Leide] B Background
4.0 T T T T 3 my =500
35 £ ARX)IZ=—0) %z 0003 3 my =750
3 plAX)Z=0) i @ C3 my =1000
3000 fAXIZ= +a) [t 4 iy =1260
H .
.30 ISREERURNURN SNSOURPORNE ERPUUPER MO SO, ¥ i o. g 3 my =1500 |
o H
LT T SN U SRS DS S : i} S
= ! - : 5 1
S I AN S NN S ; g 1
i 0.001 4
3 e |
10p--g®5F - : I : ‘ g
0.5 -0. Ll i L“H-ﬁ_._
i (R 0.000 . — —
0.0 ¥ -1.0 R o 500 1000 1500 2000 2500 3000
0o o0z 04 06 08 1 ~1.0-05 0.0 05 10 L5 20 Moy [GEV]

Add v as an input to the model and profile

With adversarial training, force the model
it out later.

to be independent of v.

Learning to Pivot with Adversarial Networks

G. Louppe, M. Kagan, K. Cranmer

https://arxiv.org/abs/1611.01046
Parameterized Machine Learning for High-Energy Physics
P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, D. Whiteson
https://arxiv.org/abs/1601.07913
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()

Probabilistic Programming

Frank Wood, Atilim Gunes Baydin, TTIC, OXFORD

-

A Probabilistic Program

“Probabilistic programs are usual functional or

impe

(1)

rative programs with two added constructs:

the ability to draw values at random from

distributions, and

~

(2) the ability to condition values of variables in a

\_ program via observations.” i
4 Success Stories N
Graphical Models Factor Graphs
9 =
* & oo
BUGS STAN Factorie Infer.NET
\ J
02/22/18

/ New Physics via Standard Model + ATLAS Simulator Inversion\

event & detector simulators  ATLAS detector output

> Dense and exhaustive talk
> Learn how to control a simulator to

provide a given output
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Other Applications

* Outliers selection

* Anomaly detection

» Data quality automation

» Detector control

* Experiment control

» Data popularity prediction

* Computing grid control

* Denoising with auto-encoder

NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant
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9 Search For New Physics

Higgs discovery : we
kn eW Wh at It WO U Id Summary of CMS SUSY Results* in SMS framework ICHEP 2014

[“m(mother)-m(LSP)=200 GeV

. 5
I k I k 3 Gy’ [ISUSTIOIOLETOSIHD L
I e 8 G | SUS14-011SUS13-019L=19319.5/fb |
O O a Gony | SUS-13:007 SUS-13-013L=19.4 19.5 /fb ]
2 Gl 1y ) SUS-13-008 SUS-13-013 L=19.5 /fb
3 Goaiow;) [ SUSISOTSL=AO6 /D S ———. 850 20

G- 1 W ) SUS-13-008 SUS-13-013 L=19.5 /fb

CMS preliminary ST
I

1 T 1 1 T T LI | o s T

30F * Data (s=7TeV:L= 51" g
L ] my=126 GeV (s=8TeV:L=196f"

SUS-13-024 SUS-13-004 L=19.5 /fb
SUS-13-024 SUS-13-004 L=19.5 /fb. ]

| [ Zy*, z2Z ] g SUS-13-018 L=19.4 /fb P ———
g SUS-13-008 SUS-13-013 L=19.5 /fb S
L B z+x ] 8 SUS-13-008 L=19.5 /fb —

SUS-13-006 L=19.5 /fb T 4%
SUS-13-006 L=19.5 /fb ]

e . CMS Preliminary

SUS-14-002 L=19.5 /fb For decays with intermediate mass,

Lo
SUS-13.006 Lo195 b -__X,‘,ﬁf‘gg‘“ Mitermediate = X Mrgtner (17X Mgy

Events / 3 GeV

lepton EWK gauginos

7 -

RPV

L | - 1
1600 1800
Mass scales [GeV]

R
1400

T N
200 400 600 1000 1200

“Observed limits, theory uncertainties not included
Only a selection of available mass limits
Probe *up to* the quoted mass limit

New physics searches (Susy, ...) : we
don't know what to expect.
> Unsupervised machine learning
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(¢ oOutlier Identification

e Train a NADE (https://arxiv.org/abs/1306.0186 ) model on
mixture of the known backgrounds

« Use a synthetic dataset with small injected signal

* Log density singles out the injected signal

10° . .
[ background
B signal
Bl pseudo

10° | =

Number of data points
i
=)

L hJ |

=70 —60 =50 —40 =30 =20 -10 0
log density
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('] Anomaly Learning

* Not 100% of the data taken at the experiements are good for
analysis (detector effect, calibration, software defect, ...)

e Luminosity block = 23s of beam
« Histograms made per luminosity block are scrutinized by experts to

decide on good/bad data
» Several layers of scrutiny, labor intensive

* The maChIne Iearning approaCh EE Average labor fraction
- ldentifies relevant features |
> Calc_:ulates percentile per -
lumiblock
~ Trains rolling classifiers

0.90

0.84

0.78

o
o
o
&

0.72

0.66

0.60
ID.54
0.48

o
o
o
=S

Pollution Rate

» Accepting 1% data loss could
save 40% of the workload on ¢
the certification team

0.000
0.000 0.002 0.004 0.006 0.008 0.010

Loss Rate

02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 79



()

Cryogenic Anomaly Detection

Learning phase

E@) =) dy «P(lD) ik
i=1

® Building a model based on

historical data
® 3 different algorithms

[N
max
EE l=k

Tl —cll T IIx—c]II}
My N;

ey —cp ll

LHC Logging
Service

Sensors data
extraction

® Correlation index and
KNN-graph

K-Mean clustering and
probability model

Statistics expert-based
model

L
2% 8,
[ ]
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eteg®,
L

Anomaly detection J\Q _
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Use the previous
model to detect TR :
anomalies M o b e W

On-line analysis .
over a time window a ] T - <}
of 1 day

Continuous analysis _
against thousands , 1
of sensors -

B

* Project from the LHC cryogenic team
https://indico.cern.ch/event/514434/
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https://indico.cern.ch/event/514434/

(!Z_ GRID Echosystem

» Optimization of each component independently might
not lead to the global optimum
* Need to consider the system as a whole

* Model single element metrics with deep learning
* Reinforcement learning to control the system'’s
components
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Accelerating and Emerging
Technologies
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"= Caltech GPU Servers
* 4 compute nodes :

Intel® Xeon® CPU with
NVIDIA® TITAN (1x2), GTX
1080 (2x8), TITAN-X (1x8)

* 1 head node for login, jupyterhub,
home directory, nfs, www.

.+ 1 shared disk server (20TB) over
~ 10GBs NICS

-

—_—

‘*’G’“ﬁiﬁ“— = land | I o Partnering vendors/donators

o , _ ‘ supermicro, cocolink, dell, intel,
4,,2_1_;5\550;?:576777; = !‘ | : G": nvidia
' 3 | > Prototyping and small scale
training
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Cooley
* 126 compute nodes :

Two 2.4 GHz Intel®
Haswell® E5-2620 v3
processors per node (6 cores
per CPU, 12 cores total) and
NVIDIA® Tesla® K80

» Theoretical Peak Performance :

293 Tflops

> Development Project with 8k
core hours
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Piz Daint
e 5272 compute nodes :

Intel® Xeon® E5-2690 @
2.60GHz (12 cores, 64GB RAM)
and NVIDIA® Tesla® P100

* Theoretical Peak Performance :

10 Pfops

> Allocation 9k node-hours
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Titan
18688 compute nodes :
2.2GHz AMD® Opteron®
6274 processors per node (16
cores per CPU) and NVIDIA®
Tesla® K20X
» Theoretical Peak Performance :
20 Pflops

> Allocation 2M node-hours
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@ Distributed Learning

1) Compute gradient,
send to Master 2) Update network

E w— W — T;VQ(":I;') weights

3) Send new weights to Worker ¢

* Deep learning with elastic averaging SGD
https://arxiv.org/abs/1412.6651
 Revisiting Distributed Synchronous SGD
https://arxiv.org/abs/1604.00981
* Implementation with Spark and MPI for the Keras
framework https://keras.io/
> https://github.com/JoeriHermans/dist-keras

> https://github.com/duanders/mpi_learn
02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 87



https://arxiv.org/abs/1412.6651
https://arxiv.org/abs/1604.00981
https://keras.io/
https://github.com/JoeriHermans/dist-keras
https://github.com/duanders/mpi_learn

Motivation

* Prototyping and training with keras ( http://keras.io/ )

» Use of GP-GPU can significantly speed up training of
deep or not so deep neural net

> A typical 10x

 Training of large model on large dataset can still take
several days to convergence on single GPU

 Even more painful in case of scanning or tuning of
hyper-parameter

> Speed up can be obtained

v Data parallelism for large dataset (strong scaling)
» Model parallelism for large model (weak scaling)
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Training Speed-up

 Benchmark on single

co

Servel' W|th 8 GPUS o o ll\lo validlatien
JLs 4 Half validation
v v Validation
* MPI spawns workers on -
different cores E
* Each core is instructed to  ¢°|
use a different GPU g a4l
> Speed-up is quasi-linear |
with number of GPU 2|
> 7x on a single server 1 - - - |
1 2 3 i | 5 6 7 8 9

Number of worker processes
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Speed-up Scaling

 Benchmark on Cooley GPU
cluster at ALCF 0

e e No validation
4 4 Half validation
v v Validation

un
o
T

 MP| spawns workers on
different nodes
« Each node uses its GPU

B
=
T

L
o
T

> Speed-up is quasi-linear
up to ~15 GPU

> Loss in scaling above

> 30x using 60 nodes

[l
o
T

Speedup relative to 1 worker

=
o
T

1 5 10 15 20 25 30 35 40 45 50 55 60
Number of worker processes

» Scaling still to be understood
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Validation accuracy

Stale Gradients

Validation accuracy after a fixed number of
epochs of training

1.0

0.8

T

o
T
i

0.2 1

0.0

T T T T T T T T T T T T
1 5 10 15 20 25 30 35 40 45 50 55 60
Number of worker processes

02/22/18

* Workers end up producing
gradients from outdates
weights

» Slow down of the
convergence with larger
number of workers

 Effect can be mitigated
with tuning of momentum
https://arxiv.org/abs/1606.04487
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https://arxiv.org/abs/1606.04487
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Hardware Consideration
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 GPUs are the workhorse for
parallel computing

* Enable training large models, with
large dataset

* Deep learning facility clusters

oy

 Emergence of smaller GPU

* Not dedicated to training

» Strike the balance between
Tflops/$ for inference

* Deployment on the grid
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http://www.nature.com/articles/srep14730

rm:_}

“neural c h'ps
(2)(128 \ ble neurons)

* Implementing plasticity in hardware

* Process signal from detector and adapt to
categories of pattern (unsupervised)

» Post-classified from data analysis or rate throttling

»NCCR consortium assembling to develop this
technology further, with our use case in mind
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http://www.nature.com/articles/srep14730

» Spiking neural net as processing units :
>Cognitive Computing Processing Unit : CCPU

* Adopt a new programming scheme, translate
existing software

* See Rebecca Carney's talk for more details
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