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Outline

●Overview of the challenge
●Computing for and with 
Machine Learning

➔Access to data
➔Access to resource
➔Access to software

●Summary & Conclusions
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Overview
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Big Science Pipeline

LHC Computing Grid 
200k cores pledge to
CMS over ~100 sites

CMS Detector
1PB/s

CMS L1 & High-
Level Triggers

50k cores, 1kHz

Large Hadron Collider
40 MHz of collision

CERN Tier-0
 Computing Center
20k cores dedicated

CERN Tier-0/Tier-1
 Tape Storage

200PB total LHC  Grid 
Remote Access 
to 100PB of data

Rare Signal
Measurement
~1 out of 106 
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The Large Hadron Collider
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The Standard Model

Well demonstrated effective model 
We can predict most of the observations
We can use a large amount of simulation
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Size Of The Challenge

1 event
every

500.000 proton
 collision

Predictions agree with observation
Need to collect rare events from a large amount of data
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CMS Detector
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CMS 100 Megapixel Camera
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CMS Readout

Highly heterogeneous system 
Raw data is 100M channels
sampled every 25 ns : 1Pb/s
50EB per day in readout and

online processing.
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Event Filtering

From Big Data to Smart Data
with ultra fast decision
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Computing Grid
Tier0

CERN
Computer Center

Tape Robots

IN2P3 T1 INFN T1FNAL T1... ...

10 – 40 to 100 Gb/s

300-1500
MB/s

T2 T2

T2 T2

T2 T2
T2 T2

T2 T2
T2 T2

● Hundreds of computer centers (100-10k cores per site)
● Increased use as a cloud resources (any job anywhere)
● Increasing use of additional cloud and HPC resource
● Real time data processing at Tier0
● Data and Simulation production everywhere
● High bandwidth networks between disk storage
● >200k cores pledged world-wide for CMS computing

10 – 40 to 100 Gb/s 10 – 40 to 100 Gb/s

T3

T3 T3

T3

10 to Nx10 Gb/s
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Why Machine Learning
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Why Deep Learning
● LHC Data Processing may use deep learning methods in many aspects
● Several class of LHC Data analysis make use of classifier for signal versus

background discrimination. 
✔ Use of BDT on high level features
✔ Increasing use of MLP-like deep neural net

● Deep learning has delivered super-human performance at certain class of tasks
(computer vision, speech recognition, ...)

✔ Use of convolutional neural net, recurrent topologies, long-short-term-
memory cells, ...

● Deep learning has advantage at training on “raw” data
➢ Several levels of data distillation in LHC data processing

● Neural net computation is highly parallelizable
➔ Better use of GP-GPU than regular HEP algorithms

● Complex systems to operate, complex signal to analyze
➢ Over-come challenges of data density and volume
➢ Over-come challenges of data and detector complexity
➢ Over-come challenges of ultra-fast decision
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Where Deep Learning

● Detector and apparatus control
● Computing GRID, Center & network control
● Operation anomaly detection
● Fast triggering on object or full events
● Fast approximate algorithms
● Rare event detection
● Automated data certification
● Faster simulation software
● Finer even selection
● Better object identification
● More precise event reconstruction
● More robust measurements
● ...
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Computing with and for ML
For

Computing resources need to be set to enable machine
learning and in particular deep learning

➢ Heavy training
➢ Inference in commodity hardware
➢ Fast inference on dedicated hardware

With
The LHC computing system is a very complex one, with
an even bigger data challenge in horizon 2025

➢ ML to optimize data placement
➢ ML to model the system
➢ RL to take control of the system

These slides are mixture of both, organized in the three
topics : data, resource and software.
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Access to Data
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Data Access Patterns

● Analysis access pattern
➢ Many users accessing the same set of datasets
➢ Balance of cpu-bound and I/O-bound
➢ Can mostly afford a one-off read from remote

● Model Training access pattern
➢ A dataset used for training over many epochs
➢ Full dataset read multiple times over in one pass
➢ Needs a local storage copy, even a node copy

➔ Some of the grid computing paradigms do not support
this natively
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Data Formats

Pivarski at https://indico.cern.ch/event/613842/ 

https://indico.cern.ch/event/613842/
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Data Bridges

Other big-data approaches possible ?
GPU-accelerated sqlite-database, fast indexing,
hyper-compression
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Data Placement

Problem statement
 100PB of storage non uniformly distributed over 100

sites
 10s of thousand of analysis datasets or variable

importance
 Analysis software not only I/O bound

➔ Locate the dataset on disks over sites so that
analyzers can ran on them in short turnaround time.

● The current solution is to measure popularity of
samples, replicate accordingly, and load balance disk
occupation.

● Can we actually predict the relevance of samples
based on current utilization's trend ?
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Data Popularity

Kuznetsov, Bonacorsi
https://arxiv.org/abs/1602.07226 

https://arxiv.org/abs/1602.07226
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LHC Networking

HEP is a privilege customer of networks
Need to use it efficiently to remain this way
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Software Defined Network

OpenFlow
Protocol

OpenFlow
Switch

OpenFlow
Switch

Controller (PC)

OpenFlow
Switch

App App

New paradigm adopted by research and education
network as well as industry

Enables network control by applications
Programmatically define the network functions
Increase use of machine learning techniques

OpenFlow is a standard protocol between controller
and network devices
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Caching Network

Lixia Zhang (UCLA) 
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Access to Software
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Software in HEP
● ROOT-TMVA has made a lot of changes in recent

years
➔ Bridge to python, scikit-learn, R, ...
➔ Implementation of deep learning
➔ GPU support, mpi, ...

● Software is commonly distributed over cvmfs
(CERN virtual machine file system)

➔ Need only to install cvmfs
✗ Not always the bleeding edge versions

● Many solutions for bridges
➔ Docker, shifter, singularity, ...

● Bleeding edge methods are in pytorch, tensorflow,
keras, ... how can both ends meet ?
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Software Bridges

The data conversion throw bridges between
root and industry software
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On-Time Inference 
Problem Statement

● Experiments are running within their C++ framework,
running over the WLCG on comodity hardware

● Most training libraries are based on python, using GP-
GPU

➔ How to run inference efficiently of the trained models

Current Solutions
● C++ implementation of most operators

➔ https://github.com/riga/tfdeploy
https://gitlab.cern.ch/mrieger/CMSSW-DNN 

➔ https://github.com/lwtnn/lwtnn 
✔ Work for most tensorflow and keras models

● Tensorflow C++ backend in CMSSW

Can this be integrated better with the experiment framework ?

https://github.com/riga/tfdeploy
https://gitlab.cern.ch/mrieger/CMSSW-DNN
https://github.com/lwtnn/lwtnn
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Access to Resources
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Working with Notebook

https://swan.web.cern.ch/ 

https://tinyurl.com/yd5k3cp9 

https://swan.web.cern.ch/
https://tinyurl.com/yd5k3cp9


02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 32

Possible Interface To HPC

https://tinyurl.com/yaxwgqgj 

https://tinyurl.com/yaxwgqgj
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GPU on the GRID

http://connect.uscms.org/ 

http://connect.uscms.org/
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Training As a Service

➔ Deep Learning
training with SGD
has a very clear I/O
for the user

➔ Can be abstracted
away from the user

➔ Allows for a secure
entry point to large
resource, like HPC 
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Distributed Training

● All deep learning frameworks have developed their
own way to do this (elastic or reduce)

● Recent results in scaling up at NERSC
● Can boost science with utilization of HPC
● Still very much in development

https://github.com/JoeriHermans/dist-keras 
https://github.com/duanders/mpi_learn 

https://github.com/JoeriHermans/dist-keras
https://github.com/duanders/mpi_learn
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Distributed Optimization

Nguyen, Pierini, Anderson, Carta, Vlimant
https://indico.cern.ch/event/683349 

https://indico.cern.ch/event/683349
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Controlled LHC Cloud
Computing 
Elements

Storage 
Elements

Network 
Elements

● Optimization of each component independently might not lead
to the global optimum

● Need to consider the system as a whole

➔ Need for a simulator or an environment for exploration
● Model single element metrics
● Reinforcement learning to control the system's components
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Resource Utilization

● Metadata from all
workflow management,
job scheduler, data
management services on
HDFS at CERN

● Lots of possible insight to
be gain from these  large
datasets

➢ Contribution to improve
monitoring 

➢ Contribution on
understanding how to
operate the systems
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Summary

● Lots of potential applications of deep
learning within the big data pipeline of
LHC data.

● Several potential projects to contribute to
providing resources/data/software to
physicists at the LHC.
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A rather large set of
backup slides for reference
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Tracks Pattern Recognition
● From sparse 2D/3D points reconstruct the path of a charged particle
● Iterative process using combinatorics, Kalman Fitting and Filtering
● Most CPU intensive part of the event reconstruction (~10s /event)
● Computation time scales ~quadratically with number of interactions
● Any fraction of patterns that can identified faster will make a difference
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Vertex Identification
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Energy Pattern Recognition
● Particles emitted from the interaction point are stopped in

calorimeters (except for muons, neutrinos, …)
● Pattern of energy deposition is somehow characteristic
● Classical, physics driven methods have been used to recollect

the total energy and identify the particle
● Efficient classifiers are being used on derived features
● Room for improvement in deriving the low level features
● How to deal with so many overlapping collisions
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What is Jet

● Partons (quark ,gluons) have to be in pairs or triplets in nature
● Parton gets “suited” with partners as propagating away from creation
● The result is a “jet” of particles in the direction of the original parton
● The jet collimation depends on the energy of the initial parton



02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 45

A Journey Through Matter
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What is an Event

Add 40 such on top of each other. 
Up to 200 such overlay in the horizon 2025

One event every 25 ns / 40MHz
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Why Deep Learning
● LHC Data Processing may use deep learning methods in many aspects
● Several class of LHC Data analysis make use of classifier for signal versus

background discrimination.
✔ Use of BDT on high level features
✔ Increasing use of MLP-like deep neural net

● Deep learning has delivered super-human performance at certain class of tasks
(computer vision, speech recognition, ...)

✔ Use of convolutional neural net, recurrent topologies, long-short-term-memory
cells, ...

● Deep learning has advantage at training on “raw” data
➢ Several levels of data distillation in LHC data processing

● Neural net computation is highly parallelizable
➔ Better use of GP-GPU than regular HEP algorithms

● Complex systems to operate, complex signal to analyze
➢ Over-come challenges of data density and volume
➢ Over-come challenges of data and detector complexity
➢ Over-come challenges of ultra-fast decision
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Where Deep Learning

● Detector and apparatus control
● Computing GRID, Center & network control
● Operation anomaly detection
● Fast triggering on object or full events
● Fast approximate algorithms
● Rare event detection
● Automated data certification
● Faster simulation software
● Finer even selection
● Better object identification
● More precise event reconstruction
● More robust measurements
● ...
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Machine Learning in a Nutshell

Balazs Kegl, CERN 2014
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What Machine Learning

● Classification and regression
● Deep neural nets (CNN, RNN, ...)
● Unsupervised clustering
● Control theory 
● Re-inforcement learning
● Generative models
● Density estimators
● Interaction networks
● Graph networks
● ...
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Application to Intensity and
Energy Frontiers

(a selected few) 
Data Science in HEP Series

http://cern.ch/DataScienceLHC2015
https://indico.hep.caltech.edu/indico/event/102

http://dshep.fnal.gov/
Connecting the Dots Series

https://indico.hephy.oeaw.ac.at/event/86/ 
https://ctdwit2017.lal.in2p3.fr/ 

Hammers and Nails
https://www.weizmann.ac.il/conferences/SRitp/Summer2017/

 

http://cern.ch/DataScienceLHC2015
https://indico.hep.caltech.edu/indico/event/102
http://dshep.fnal.gov/
https://indico.hephy.oeaw.ac.at/event/86/
https://ctdwit2017.lal.in2p3.fr/
https://www.weizmann.ac.il/conferences/SRitp/Summer2017/
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NOVA Event Classification 

Slides on Paolo
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Flavor Segmentation
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Decay Point Identifier

Ground truth muon 
decay vertex

CNN muon vertex
identification

● CNN slightly outperform the
classical approach

● Much less complication in
programming the vertex finding
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Particle Jet Identification

Neural
 net

Train

W to QCD
discrimination

W tagger arXiv: 1511.05190, Oliveira, Kagan, Mackey, Nachman, Schwartzman

Top Tagger arXiv: 1501.05968 Almeida, Backovic, Cliche, Lee, Perelstein

W to QCD
discrimination
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Interaction Network For Jet-id

Interaction Networks for Learning about
Objects, Relations and Physics
P. W. Battaglia, R. Pascanu, M. Lai, D.
Rezende, K. Kavukcuoglu
https://arxiv.org/abs/1612.00222 

● Learning the relation
between particles
(gravity, spring, wall, ...)

➔ (on-going work) Applied
to jet identification using
all  particles it is made of

https://arxiv.org/abs/1612.00222
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3D Calorimetry Imaging

100GeV Photon 100GeV Pi0

≠
LCD Calorimeter configuration
http://lcd.web.cern.ch
5x5 mm Pixel calorimeter
28 layer deep for Ecal
70 layer deep for Hcal

Photon and pion particle gun
Classification models

http://lcd.web.cern.ch/
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3D Calorimetry Regression

Calibrate the energy deposition using
convolution neural nets
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Challenge of Geometry

Hexagonal cells

Projective Geometry

Variable Depth Segmentation

The images we are dealing with are
not as regular as standard images.
Need for specific new treatment and
methods to feed neural nets
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Calorimeter GAN

CaloGAN
M. Paganini, L. de Oliveira, B. Nachman 
https://arxiv.org/abs/1705.02355 

Complex generative adversarial model
based on previous 2D GAN
High reward application to fast
simulation for the ATLAS experiment

https://arxiv.org/abs/1705.02355
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3D GAN

Work in progress base on previous
work on 2D GAN
Aim at accelerating part of the GeantV
simulation
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Collision Event Classification

● Full event classification using reconstructed particle 4-vectors
● Recurrent neural nets, Long short term memory cells
● Dedicated layer with Lorentz boosting
● Step toward event classification with lower level data : low

level feature as opposed to analysis level variables
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Recurrent/Recursive Networks

QCD-Aware Recursive Neural Networks
for Jet Physics.
Louppe, Cho, Becot, Cranmer 
https://arxiv.org/abs/1702.00748 

Identif ication of Jets Containing b-
Hadrons with Recurrent Neural Networks 
at the ATLAS Experiment 
http://cds.cern.ch/record/2255226 

https://arxiv.org/abs/1702.00748
http://cds.cern.ch/record/2255226
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Challenge in Natural Ordering
Text have natural
order. RNN/LSTM
can correlate the
information to
internal
representation

There is underlying
order in collision
events. Smeared
through timing
resolution. No natural
order in  observable

➢ Learn how to sort
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Learn How To Sort

Sorting and “soft” sorting models can be
concurrently trained with recurrent networks
Expensive and tricky to train
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Charged Particle Tracking

● Perfect example of pattern recognition
● Data sparsity is not common in image processing
● Several angles to tackle the problem. Deep Kalman filter,

RNN to learn dynamics, sparse image processing, ...
● Kaggle challenge in preparation
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HEP.TrkX Project

Un-seeded Track Reconstruction

Track Parameter Estimation

Pilot project funded by DOE ASCR 
and COMP HEP. Part of HEP CCE.
LBNL, Fermilab, Caltech consortium
➔ Mission
Explore deep learning techniques

for charged particle track
reconstruction

https://heptrkx.github.io/

Un-seeded Track Reconstruction

Seeded Track Reconstruction

Conference Talks
https://indico.cern.ch/event/577003/contributions/2476580/
https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5393,Y
https://indico.cern.ch/event/567550/contributions/2629737/   

https://heptrkx.github.io/
https://indico.cern.ch/event/577003/contributions/2476580/
https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5393,Y
https://indico.cern.ch/event/567550/contributions/2629737/
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Seeded Pattern Prediction

● Hits on first 3 layers are used as seed
● Predict the position of the rest of the hits on all layers
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LSTM ≡ Kalman Filter
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Un-binned Seeded Tracking

Hit position input not as an image
but as a sequence of positions
Overcomes the scalability issue
Analog to Kalman Filter approach
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Prediction Track Covariance

Model is modified to predict a covariance matrix
for which there is no ground truth, but is used with
the modified loss function
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Track Parameters Uncertainty

Representation of track
slope, intersect and

respective uncertainties
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Hopfield Network

https://link.springer.com/chapter/10.1007/3-540-61510-5_1 

● Not a neural network per say
● Fully-connected graph
● Connections pruned based

on an enery minimisation
model

https://link.springer.com/chapter/10.1007/3-540-61510-5_1
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Learn With Uncertainty

Learning to Pivot with Adversarial Networks
G. Louppe, M. Kagan, K. Cranmer
https://arxiv.org/abs/1611.01046 

Parameterized Machine Learning for High-Energy Physics 
P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, D. Whiteson
https://arxiv.org/abs/1601.07913 

https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1601.07913
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Probabilistic Programming
Frank Wood, Atilim Gunes Baydin, TTIC, OXFORD

➔ Dense and exhaustive talk
➔ Learn how to control a simulator to

provide a given output
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Other Applications

● Outliers selection
● Anomaly detection
● Data quality automation
● Detector control
● Experiment control
● Data popularity prediction
● Computing grid control
● Denoising with auto-encoder
●  ...
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Search For New Physics
Higgs discovery : we
knew what it would

look like

New physics searches (Susy, ...) : we
don't know what to expect.

➔ Unsupervised machine learning
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Outlier Identification

● Train a NADE (https://arxiv.org/abs/1306.0186 ) model on
mixture of the known backgrounds

● Use a synthetic dataset with small injected signal
● Log density singles out the injected signal

https://arxiv.org/abs/1306.0186
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Anomaly Learning
● Not 100% of the data taken at the experiements are good for

analysis (detector effect, calibration, software defect, …)
● Luminosity block ≡ 23s of beam
● Histograms made per luminosity block are scrutinized by experts to

decide on good/bad data
● Several layers of scrutiny, labor intensive 
● The machine learning approach 

➢ Identifies relevant features
➢ Calculates percentile per

lumiblock
➢ Trains rolling classifiers

● Accepting 1% data loss could
save 40% of the workload on
the certification team

Average labor fraction
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Cryogenic Anomaly Detection

https://indico.cern.ch/event/514434/ 

● Project from the LHC cryogenic team

https://indico.cern.ch/event/514434/
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GRID Echosystem
Computing 
Elements

Storage 
Elements

Network 
Elements

● Optimization of each component independently might
not lead to the global optimum

● Need to consider the system as a whole

● Model single element metrics with deep learning
● Reinforcement learning to control the system's

components



02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 82

Accelerating and Emerging
Technologies
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Caltech iBanks Cluster

Caltech GPU Servers
● 4 compute nodes : 

Intel® Xeon® CPU with 
NVIDIA® TITAN (1x2), GTX
1080 (2x8), TITAN-X (1x8)

● 1 head node for login, jupyterhub,
home directory, nfs, www.

● 1 shared disk server (20TB) over
10GBs NICS

➔ Partnering vendors/donators
supermicro, cocolink, dell, intel,
nvidia

➔ Prototyping and small scale 
training
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ALCF

Cooley
● 126 compute nodes : 

Two 2.4 GHz Intel®
Haswell® E5-2620 v3
processors per node (6 cores
per CPU, 12 cores total) and
NVIDIA® Tesla® K80

● Theoretical Peak Performance :
293 Tflops

➔ Development Project with 8k
core hours
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CSCS Piz Daint

Piz Daint
● 5272 compute nodes : 

Intel® Xeon® E5-2690 @
2.60GHz (12 cores, 64GB RAM)
and NVIDIA® Tesla® P100

● Theoretical Peak Performance :
10 Pfops

➔ Allocation 9k node-hours
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OLCF

Titan
● 18688 compute nodes : 

2.2GHz AMD® Opteron®
6274 processors per node (16
cores per CPU) and NVIDIA®
Tesla® K20X

● Theoretical Peak Performance :
20 Pflops

➔ Allocation 2M node-hours 
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Distributed Learning

● Deep learning with elastic averaging SGD
https://arxiv.org/abs/1412.6651 

● Revisiting Distributed Synchronous SGD
https://arxiv.org/abs/1604.00981 

● Implementation with Spark and MPI for the Keras
framework https://keras.io/ 

➔ https://github.com/JoeriHermans/dist-keras 
➔ https://github.com/duanders/mpi_learn 

https://arxiv.org/abs/1412.6651
https://arxiv.org/abs/1604.00981
https://keras.io/
https://github.com/JoeriHermans/dist-keras
https://github.com/duanders/mpi_learn
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Motivation

● Prototyping and training with keras ( http://keras.io/ )
● Use of GP-GPU can significantly speed up training of

deep or not so deep neural net
➔ A typical 10x

● Training of large model on large dataset can still take
several days to convergence on single GPU

● Even more painful in case of scanning or tuning of
hyper-parameter

➔ Speed up can be obtained 
✔ Data parallelism for large dataset (strong scaling)
● Model parallelism for large model (weak scaling)

http://keras.io/
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Training Speed-up

● Benchmark on single
server with 8 GPUs

● MPI spawns workers on
different cores

● Each core is instructed to
use a different GPU

➔ Speed-up is quasi-linear
with number of GPU

➔ 7x on a single server
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Speed-up Scaling

● Benchmark on Cooley GPU
cluster at ALCF

● MPI spawns workers on
different nodes

● Each node uses its GPU

➔ Speed-up is quasi-linear
up to ~15 GPU

➔ Loss in scaling above
➔ 30x using 60 nodes 

✗ Scaling still to be understood
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Stale Gradients

Validation accuracy after a fixed number of
epochs of training

● Workers end up producing
gradients from outdates
weights

● Slow down of the
convergence with larger
number of workers

● Effect can be mitigated
with tuning of momentum 
https://arxiv.org/abs/1606.04487 

https://arxiv.org/abs/1606.04487


02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 92

Hardware Consideration



02/22/18 NCSR, Computing, Software, Deep Learning and HEP, J.-R. Vlimant 93

Training vs Inference

● GPUs are the workhorse for
parallel computing

● Enable training large models, with
large dataset

● Deep learning facility clusters

● Emergence of smaller GPU
● Not dedicated to training
● Strike the balance between

Tflops/$ for inference
● Deployment on the grid
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Neuromorphic Hardware

http://www.nature.com/articles/srep14730 

● Implementing plasticity in hardware 
● Process signal from detector and adapt to
categories of pattern (unsupervised)

● Post-classified from data analysis or rate throttling
➢ NCCR consortium assembling to develop this
technology further, with our use case in mind 

http://www.nature.com/articles/srep14730
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Cognitive Computing

● Spiking neural net as processing units : 
➔Cognitive Computing Processing Unit : CCPU

● Adopt a new programming scheme, translate
existing software

● See Rebecca Carney's talk for more details
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