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The Large Hadron Collider

Superconducting dipole
magnets with a design field
of 8.3 T, cooled to 1.9 K
using superfluid helium

Proton-proton collider
27 km in circumference,
located at CERN in Geneva

Design energy of 14 TeV
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The CMS Detector

~76k scintillating PbWO4 crystals

Silicon strips
  ~16m2   ~137k channels

~13000 tonnes

MUON CHAMBERS 

STEEL RETURN YOKE 

HADRON CALORIMETER (HCAL)
Brass + plastic scintillator
~7k channels

SILICON TRACKER

FORWARD
CALORIMETER 

PRESHOWER

SUPERCONDUCTING
SOLENOID 

CRYSTAL ELECTROMAGNETIC
CALORIMETER (ECAL)

Total weight 
Overall diameter 
Overall length
Magnetic field

: 14000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

Niobium-titanium coil
carrying ~18000 A

Pixels (100 x 150 μm2)
  ~1m2      ~66M channels
Microstrips (80-180μm)
  ~200m2   ~9.6M channels

Steel + quartz fibres
~2k channels

CMS Detector
Pixels
Tracker
ECAL
HCAL
Solenoid
Steel Yoke
Muons

Barrel:   2250 Drift Tube & 480 Resistive Plate Chambers
Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers
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The CMS Detector
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The CMS Detector: Some Challenges
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(a) Tracker Material Budget (pre-2016)

Lots of material in
front of the ECAL

Induces e.g.
bremsstrahlung and
conversions for
electrons and photons
and therefore
non-trivial
correlations of object
properties with η
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Multivariate Analysis Techniques/Machine Learning at the
LHC

LHC data is valuable and finite

Physics processes have non-trivial and multi-dimensional underlying
kinematics of the produced particles

Space of observables is even further expanded by the interaction with and
measurement by the detectors

Need to maximally exploit the large amount of information in each
collision event

Example: Optimal discrimination between signal and background from
full multidimensional log-likelihood ratio LR = Ls (x̄)

Ls (x̄)+Lb(x̄)

Not known analytically in general, need to estimate from finite Data or
Monte Carlo “training” samples

Machine learning classifier typically implemented with Boosted Decision

Tree (BDT) or Artificial Neural Networks
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Overview

Brief intro to basic machine learning techniques

Illustrative examples of machine learning used in several
contexts:

Physics object identification in CMS
Physics object reconstruction in CMS
High-level analysis (Higgs search/observation/measurements in
CMS)
Monte Carlo generation/simulation

Future prospects
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Boosted Decision Trees for Classification

p(sig) p(sig)

p(sig) p(sig)

p(sig)

Decision Tree is a simple
structure consisting of a set of
connected “nodes”

Intermediate nodes where a
variable and cut value is
selected to split events into two
subsets

Terminal nodes are assigned a
response, in this case the

relative signal probability Ls (x̄)
Lb(x̄)

Multidimensional likelihood
ratio is therefore approximated
by a piecewise-continuous
function over the multivariate
input space

Boosting: Construct an
iterative series of decision trees
to improve the overall response
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Boosted Decision Trees for Regression

Boosted Decision Trees can
also be used for a
multivariate regression
problem

Replace log likelihood ratio
with generic function f (x̄)

e.g f (x̄) ≡
〈

ETrue
ERaw

〉
(x̄)

Minimize deviation between
training sample and
regression function

Decision trees form a series
of piecewise continuous
approximations for the
function f (x̄) in the
multidimensional input space
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Gradient Boosting
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Decision trees form an additive series of piecewise continuous
approximations for the function f (x̄) in the multidimensional input space

Additive series can represent more complex functions than single tree
with a given number of nodes

Trivial example of Sine in 1d with relatively few trees
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Artificial Neural Networks

Inspired by biology, artificial neural networks
comprise one or more layers of artificial neurons
with weight, bias, and activation function with
many possible architectures for how the
neurons/layers are connected

Already the simple “densely connected” neural
network with non-linear activation functions can
serve as a universal function approximator in a
similar manner to BDT’s

Such neural networks can be trained for
classification or regression problems with the
appropriate loss function

Training = finding optimal values for weights and

biases to minimize the loss function using some

variation of Stochastic Gradient Descent
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Electron Identification
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Reconstruction forms Superclusters extended in φ to collect conversion
legs/bremsstrahlung spread out by magnetic field

Soft conversion legs and associated bremsstrahlung may not reach
calorimeter or arrive too far to be included in Supercluster
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Electron Identification

Main sources of mis-identified electrons: π± inelastic charge exchange,
γ conversions (prompt or from π0 → γγ), semi-leptonic heavy flavour
decays
Distinguish with isolation, and with electromagnetic shower profile, track
properties, and track-cluster compatibility

Many variables with non-trivial correlations → BDT classifier on

shower/track/compatibility variables
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Electron Identification
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Electron Identification

Many variables with non-trivial correlation

BDT classifier on shower/track/compatibility variables greatly improves

signal-background discrimination compared to rectangular cuts

Not-triggering BDT
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(a) BDT Output Distribution (b) ROC Curve
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b-jet identification

Discriminating b-jets from light flavour (or c-jets) crucial for top physics,
many Higgs final states, and many BSM searches

b-jets are characterized by displaced tracks and possible reconstructed

secondary vertices

jet

jet

heavy-flavour
jet

PV

SV

displaced
tracks

IP

charged
lepton
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b-jet identification

Relevant information on kinematics, displacement, etc is in
principle available for each reconstructed particle or secondary
vertex
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b-jet identification: “DeepCSV”

Most advanced fully commissioned b-tagging in CMS uses
densely connected deep (5 layers * 100 node) neural network
with some global information, plus detailed info from up to 6
tracks and 1 secondary vertex

M. Stoye, DS@HEP 2017
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b-jet identification: “DeepCSV”

All b-taggers validated in data, with efficiencies and mistag
rates measured from b/light-flavor enriched control regions
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b-jet identification: “DeepFlavor”

More recent developments incorporate more advanced network
architecture

Convolutional layers employed at the particle and secondary vertex level

to significantly increase the amount of available information and number

of particles/SVs

M. Stoye, DS@HEP 2017
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b-jet identification: “DeepFlavor”

More recent developments incorporate more advanced network
architecture

Convolutional layers employed at the particle and secondary vertex level

to significantly increase the amount of available information and number

of particles/SVs
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b-jet identification: “DeepFlavor”

More recent developments incorporate more advanced network
architecture

Convolutional layers employed at the particle and secondary vertex level
to significantly increase the amount of available information and number
of particles/SVs

Relative gain increases with the pT of the b-jet (existing algorithms loose

discriminating power faster)
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Boosted top-jet identification

DeepFlavor architecture
used for b-tagging
adapted to the
identification of boosted
top jets (collimated top
decay products at
pT >> mT )

Incorporating

convolutional layers over

a larger number of

particles and secondary

vertices within each jet
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Photon (Electron) Regression Energy Corrections

Photon energy reconstruction in CMS:

Ee/γ = Fe,γ(x̄)×
Ncrystals∑

i

G (GeV /ADC )× Si (t)× ci × Ai

Two main components to photon energy resolution which at least partly

factorize:

1 Crystal level calibration (ADCtoGEV, Intercalibration,
transparency corrections)

2 Higher level reconstruction (local containment, global
containment, PU contamination)

Shower containment is complex and not clear if/how different
contributions factorize

Best performance is obtained with multivariate regression using BDT
with cluster η, φ, shower shape variables, local coordinates, and number
of primary vertices/median energy density as input

Regression is trained on real electrons/photons in Monte Carlo, using the
ratio of the generator level energy to the raw cluster energy, also provides
a per photon estimate of the energy resolution
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Evolution of Regression Energy Corrections in CMS

Photon energy regression in CMS initially trained using TMVA
BDT implementation

Physics performance was ok, but serious problems with size on
disk and memory consumption (1GB xml files!)

CMS has an in-house BDT storage format, persistable in root
file or conditions database, disk/memory/cpu efficient (tree
structure represented in flattened arrays, one inlined while
loop for evaluation). Can convert weights from TMVA or
produce with native BDT training tool written to exploit
parallelization, speed up training with large datasets, produce
more compact trees

Later CMS moved to “semi-parametric” regression
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Evolution of Regression Energy Corrections in CMS:
“Traditional” Regression

Multivariate techniques used in general to overcome lack of knowledge of
multidimensional likelihood using finite event samples

Traditional regression as used so far based on minimization of Huber loss
function for target prediction F (x̄) given target variable y = ETrue/ERaw

for a set of input variables x̄ (in our case cluster position, shower profile
and pileup variables)

L =

{
1
2
(F − y)2 |F − y | ≤ δ
δ (|F − y | − δ/2) |F − y | > δ

Minimized the square deviation out to some cutoff (by default ±1σ) and
the linear deviation beyond that

No built-in estimate of the per-photon resolution, accomplished with a
second training on an independent subset of the training sample with
target y = |ECor/ERaw − ETrue/ERaw |
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Semi-parametric Regression

Start with ansatz that in any infinitesimal slice of phase space
in x̄ , the energy response distribution is given by a double
crystal ball (ie gaussian core with power law tails on both
sides)

In terms of ETrue/ERaw the right tail (undermeasurement of
the energy) corresponds to the usual radiative losses, etc,
whereas the left tail (overmeasurement of the energy) comes
from pileup, etc.

p(y |x̄) = DoubleCrystalBall (y |µ(x̄), σ(x̄), αleft(x̄), nleft(x̄), αright(x̄), nright(x̄))
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Semi-parametric Regression

The log likelihood ratio for a training sample can be written
simply as

L = −
∑

MCPhotons

ln p(y |x̄)

Minimize this loss function directly with gradient boosting,
where µ(x̄), σ(x̄), nleft(x̄), nright(x̄) are regression outputs
estimated by BDT’s (using RooFit-based bdt-training tool,
which ensures proper pdf normalization, etc)

This gives a simultaneous estimate for energy correction and
resolution among other things
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Regression Performance: Simulation
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Energy Regression: Predicted Response Distribution

Semi-parametric regression provides a prediction for the full
lineshape (here showing simulation vs regression-prediction for
target variable ETrue/ERaw )

Total predicted pdf is given by sum of predicted lineshape for
each simulation event
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Energy Reconstruction: Data
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(b) Endcap

Reconstructed Z mass in data with different levels of energy
reconstruction and corrections

Progression clearly visible even with 2.5 GeV natural Z width

Josh Bendavid (CERN) Machine Learning 31



Inside the corrections
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R9 = E3x3/ESC is an effective, but not 100% pure conversion tagging
variable (electrons and photons treated separately, no explicit converted
vs unconverted distinction)

Correction vs η has a non-trivial correlation with R9 (and other shower
profile variables)
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Inside the corrections
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Correction is parametrized and plotted with respect to the supercluster
energy, but the corrected energy can also be considered a non-trivial
weighting of supercluster, 3x3, 5x5, and other energy sums/ratios in input
(dynamic noise/pileup vs containment tradeoff as a function of shower
energy, inferred impact position, etc)
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Per-photon Resolution Estimate
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(b) post-correction resolution

Strong, but non-trivial relationship between size of correction and
post-correction resolution (size of effect vs photon-to-photon fluctuations)

Per-photon resolution estimate mapped with the full granularity of the
multidimensional space used to derive the corrections
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Per-photon Resolution Estimate
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Can be used to select or categorize events to make optimal use of highest
resolution events (two unconverted photons in the center of the detector,
incident on the center of the crystal, far from module boundaries)
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Energy Scale and Resolution

Photon Energy Scale and Resolution in data measured with Z → ee
events, applying either final photon-trained regression corrections, or
equivalent electron-trained version

Monte Carlo is smeared to match data resolution

Data energy scale is adjusted to match Monte Carlo

Energy scale is determined very precisely from (millions of) Z → ee
events, remaining systematic uncertainties from electron-photon
extrapolation and extrapolation in energy

Overall systematic uncertainty on higgs mass measurement (dominated
by energy scale uncertainty) 0.12% (but per-photon energy scale
uncertainty varies according to detector region and photon quality)
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Higgs Production and Decay at LHC
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Variety of final states, would like to extract Higgs signal from
as many as possible
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Higgs→ γγ Analysis Overview

Higgs→diphoton search at CMS simple in principle: Search
for a small but narrow mass peak on a large, smoothly falling
background

Irreducible background from QCD di-photon production,
reducible background from QCD γ+jets and multi-jet
production with one or more jets faking a photon
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Higgs→ γγ Analysis Overview

 (GeV)γγm
100 120 140 160 180

E
ve

nt
s/

2 
G

eV
  

0

2

4

6

8

10

12

14

16

18

20

3
10×

Data
γ-γ

-jetγ
jet-jet
Drell-Yan

(125 GeV) x5γγ→H

 (8 TeV)
-1

19.7 fb

CMS
Unpublished
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2E1E2(1− cos θ12)

Standard Model search is carried out in inclusive, vector-boson-fusion
tagged, W/Z, and tt̄ associated production tagged channels

Analysis makes extensive use of multivariate techniques to optimize the
sensitivity, but basic principle of “bump hunt” is preserved
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Higgs→ γγ Analysis Overview

mγγ = 125.9 GeV
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Higgs→ γγ Analysis Overview

1 Primary Vertex Selection (Vertex Selection MVA)

2 Photon Selection (Preselection + Photon-jet MVA
discriminator)

3 Multivariate Regression for EM Cluster corrections with
per-photon resolution estimate

4 Energy Scale and Resolution corrections from Z → ee

5 Event Categorization (MVA Discriminator)

6 Signal modeling from Monte Carlo with smearing and scale
factors applied

7 Background modeling from fit to data

8 Statistical Interpretation: Limits/Significance using maximum
likelihood fit to mγγ distribution in event categories categories
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Photon Identification: MVA

Start with a very loose pre-selection matching trigger requirements

Construct a multivariate discriminator using a BDT trained on prompt
photons vs fakes from jets in MC, using shower and isolation variables as
input

Only a loose cut on the ID MVA value, which is fed forward to the final
di-photon MVA

MVA output shown for Z → ee events (electron-veto inverted)
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Photon Identification: MVA

Different background components clearly visible in the ID MVA output
distribution (though knowledge of the relative fractions is not required for
the analysis)

Photon ID BDT score
-0.6 -0.4 -0.2 0 0.2 0.4

0

10

20

30

0

20

40

60

80

 (8 TeV)-119.7 fb

CMS

310×
D

at
a 

ev
en

ts
 / 

0.
02

 events / 0.02
γγ

 
→

H
 

=125 GeV)
H

  (mγγ →H 

Data
MC background

γ-γ
-jetγ

jet-jet

Josh Bendavid (CERN) Machine Learning 43



Di-Photon MVA

Basic Strategy: Train di-photon mva on Signal and
Background MC with input variables which are to 1st order
independent of mγγ

Goal is to encode all relevant information on signal vs
background discrimination (aside from mγγ itself) into a
single variable

Can then simply categorize on Diphoton MVA output (5
categories, with cut values optimized against expected
limit/significance using MC background, plus additional
VBF/VH/ttH tagged categories with loose cut on di-photon
MVA)

Input variables cover kinematics (sans mass), per-event mass
resolution and vertex probability, and photon ID
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Di-Photon MVA Input Variables

Input variables cover kinematics (sans mass), per-event
resolution and vertex probability, and photon ID
Input Variables:

1 p1
T/mγγ

2 p2
T/mγγ

3 η1

4 η2

5 cos ∆φγγ
6 σm/mγγ (Right Vtx Hypothesis)
7 σm/mγγ (Wrong Vtx Hypothesis)
8 pvtx

9 IDMVA1

10 IDMVA2

σm constructed from per-photon σE estimate from regression,
adding also beamspot width contribution for wrong vtx
hypothesis
Per-event primary vertex selection probability pvtx comes from
per-event vertex MVA
IDMVA is photon vs jet discriminator for leading and trailing
photon
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Di-Photon MVA: Resolution

Since input variables are mass-independent, MVA is not
sensitive to mass resolution (since inclusive S/B in full mass
range does not change with resolution)

Correct this by weighting the signal events during training by
1/resolution, taking into account right and wrong primary
vertex hypotheses weighted by the per-event probability

wsig = pvtx

σright
m /mγγ

+ 1−pvtx

σwrong
m /mγγ

σright
m

mγγ
= 1

2

√
σ2

E1

E 2
1

+
σ2

E2

E 2
2

σwrong
m
mγγ

=

√(
σright

m
mγγ

)2
+
(
σvtx

m
mγγ

)2

With σvtx
m computed analytically from beamspot width and

calorimeter positions of the photons
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Di-Photon MVA Output

Lowest score region not included in the analysis

Diphoton MVA output for signal-like events can be validated with z → ee
events by inverting electron veto in the pre-selection

Analysis does not rely on MVA shape of Monte Carlo background
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Higgs→ γγ: All Together

Strategy: Process available information into quantities with straightforward physical interpretations in
order to combine per-event knowledge of expected mass resolution and S/B into a single “Diphoton MVA”
variable
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S+B Fits - 13 TeV
E

ve
nt

s 
/ G

eV

0

10

20

30

40

50

60

70

80

Data
S+B fit
B component

σ1 ±
σ2 ±

Untagged 0 
=1.16µ=125.4 GeV, Hm --

Preliminary CMS TeV)  (13-1 35.9 fb

γγ→H

 (GeV)γγm
100 110 120 130 140 150 160 170 180

20−

10−

0

10

20
B component subtracted

E
ve

nt
s 

/ G
eV

0

500

1000

1500

2000

2500

Data
S+B fit
B component

σ1 ±
σ2 ±

Untagged 1 
=1.16µ=125.4 GeV, Hm --

Preliminary CMS TeV)  (13-1 35.9 fb

γγ→H

 (GeV)γγm
100 110 120 130 140 150 160 170 180

100−
50−
0

50

100

150 B component subtracted

E
ve

nt
s 

/ G
eV

0

1000

2000

3000

4000

5000

6000

7000

Data
S+B fit
B component

σ1 ±
σ2 ±

Untagged 2 
=1.16µ=125.4 GeV, Hm --

Preliminary CMS TeV)  (13-1 35.9 fb

γγ→H

 (GeV)γγm
100 110 120 130 140 150 160 170 180

200−

100−

0

100

200
B component subtracted

E
ve

nt
s 

/ G
eV

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Data
S+B fit
B component

σ1 ±
σ2 ±

Untagged 3 
=1.16µ=125.4 GeV, Hm --

Preliminary CMS TeV)  (13-1 35.9 fb

γγ→H

 (GeV)γγm
100 110 120 130 140 150 160 170 180

200−
100−

0

100

200

300 B component subtracted

Plus 10 more

distributions for

exclusive-tagged

modes

Josh Bendavid (CERN) Machine Learning 49



Event Categorization
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S+B Fit - Weighted Combination
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W /Z + H → bb Signal Extraction

Even after determination of scale factors from control regions,
backgrounds have non-negligible uncertainty

Final sensitivity benefits from being able to further constrain
background normalizations in the final fit

Procedure:
1 Train four BDT’s for each channel: signal vs tt̄, signal vs

W /Z+jets, signal vs dibosons, signal vs (all) background
2 Cuts on background-specific BDT’s are used to partition final

signal vs (all) background distribution into four subsets
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W /Z + H → bb Signal Extraction
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W /Z + H → bb Signal Extraction

Input variables for BDT’s:

Several kinematic variables for selected jets (including dijet
mass) and W /Z candidate (lepton, missing transverse
momentum kinematics)
Number of additional jets
b-tag discriminant value for selected and additional jets

Jet energy scale and b-tag discriminant uncertainties enter as
shape uncertainties for final BDT distributions
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Generative Deep Neural Networks

Significant recent work on generative deep neural networks in
the data science community, with image
processing/generation as a common use case
e.g arXiv:1406.2661

Typical existing use cases:

Have a fixed set of data, or a black box generator
Train a generative model to produce samples following the
distribution of the training data (or in high dimensional cases
such as images, to produce “similar” images to those in the
training set)

Various architectures and training procedures: Variational
auto-encoders, auto-regressive models, generative adversarial
networks
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Generative Adversarial Networks

Generative adversarial networks train a deep neural network to generate
samples starting from a known prior distribution p(z̄) which is easy to
sample from (e.g. an N-dimensional normal distribution)
The generative network Ḡ transforms the input samples to the output
space x̄ , ie G(z̄) = x̄
A discriminator network D (e.g. a standard DNN classifier) is trained to
distinguish the generated samples from the training samples

Training proceeds iteratively such that the D is trained to maximally

discriminate and G is trained to minimize the discrimination power of D

until the generated samples follow the ∼ same distribution as the training

set (MINIMAX problem/saddle point, difficult to train)

arXiv:1406.2661
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Simulating Calorimeter Showers

Accurate, physics-based simulation of calorimeter showers is available
with GEANT, but computationally intensive

Generative Deep Neural networks could be used to simulate showers

Goal is not a better simulation, but a computationally faster one

CaloGAN work in arXiv:1705.02355 achieves approximate
modelling of shower profiles, but 100,000x speedup for DNN
on GPU vs Geant on CPU
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Machine Learning Monte Carlo Integration

Use machine learning to improve Monte Carlo integration
efficiency in generators beyond what is achievable with VEGAS

J. Bendavid, “Efficient Monte Carlo Integration Using
Boosted Decision Trees and Generative Deep Neural
Networks” https://arxiv.org/abs/1707.00028
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DNN 4D Camel Function Example

(a) Generated (2D
Slice)

(b) Generated vs
Prior (1D pair)
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(c) Integration
Weight

3x smaller weight variance to foam with 10x less function evaluations

Algorithm # of Func. Evals σw/ < w > σI/I
(2e6 add. evts)

VEGAS 300,000 2.820 ±2.0× 10−3

Foam 3,855,289 0.319 ±2.3× 10−4

Generative DNN 300,000 0.082 ±5.8× 10−5

Generative DNN 294,912 0.083 ±5.9× 10−5

Generative DNN (staged) 294,912 0.030 ±2.1× 10−5
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Some results - 9D Camel Function Integration

Comparing Vegas, GBRIntegrator, Generative DNN for
9-dimensional camel function

Algorithm # of Func. Evals σw/ < w > σI/I
(2e6 add. evts)

VEGAS 1,500,000 19 ±1.3× 10−2

GBRIntegrator 3,200,000 0.63 ±4.5× 10−4

GBRIntegrator (staged) 3,200,000 0.31 ±2.2× 10−4

Generative DNN 294,912 0.15 ±1.1× 10−4

Generative DNN (staged) 294,912 0.081 ±5.7× 10−5

50x smaller weight variance to Vegas with 2x function evaluations (BDT)

DNN approach scales much better with dimensionality (> 100x smaller

weight variance than Vegas with 5x fewer function evaluations
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Outlook: Machine Learning Monte Carlo Integration

Large improvements with novel algorithms already
demonstrated on test cases

Exploring alternative DNN architectures including
auto-regressive models and convolutional elements

Integration into Madgraph aMC@NLO and tests with QCD
matrix elements in progress
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Conclusions and Outlook

Machine learning used extensively already in LHC Run 1, typically BDT’s
and simple ANN’s taking high level features as input, for classification
and also regression in some cases

Important to have regression/classification accuracy
estimates/uncertainties to make optimal use of events (weighting or
classification)

Integration into analysis and extraction of results as important as
underlying machine learning techniques

Underyling machine learning techniques transitioning to Deep Neural
Networks with a range of architectures, benefiting from active research
and technical implementations from broader data science community and
industry

For HEP: Enables much-higher dimensional problems: Use of lower level
or even detector-level inputs. Lots of work already underway

Personal interests: Likelihood-based/in-situ uncertainty estimates for

DNN’s, calibration of simulations, interplay of ML with unfolding and

parameter extraction at high level of the analysis
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Backup
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Conclusions (Energy Regression)

Many effects (local containment, material interactions, pileup) lead to
both shifts in energy scale and additional event-to-event fluctuations,
with non-trivial correlations between them

Transversely segmented calorimeters provide potentially large amount of
information about the shower properties which can be used to construct
in-situ corrections

Multivariate/machine learning techniques very effective for high
dimensionality problems with no (fully) parametric model but large
training datasets available

For optimal use of data, important to have fine-grained resolution
estimate along with optimized energy corrections

Has achieved significant improvements in energy resolution for
electrons/photons in CMS electromagnetic calorimeter with large payoff
for the Higgs discovery and properties measurements

Semi-parametric extension of existing algorithms developed as part of this
effort
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Further Considerations (Energy Regression)

In CMS we have so far trained multivariate corrections in Monte Carlo
simulation

Better simulation for training → better performance of corrections on
data

Test-beam data with known beam energy could also be used for training
in principle (and may be very useful as part of detector development and
characterization)

Ongoing work to use Z → ee collision data to train corrections in-situ
(but more complicated due to correlation between two electrons in each
event as well as natural Z width)

Corrections can always be staged, e.g., simulation-trained correction +
data trained “residual” corrections

Effective use cases for prediction of full lineshape in addition to Gaussian
resolution?

So far pulse reconstruction/out-of-time pileup has been treated as a
separate factorized piece. Algorithmic solutions are effective albeit
cpu-expensive, machine learning opportunities here?

Opportunities for further improvements with more modern machine
learning techniques like deep neural networks?
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Higgs→ γγ Decay

No tree-level hγγ vertex, decay proceeds through W and
fermion (top) loops which interfere destructively

Branching ratio to two photons very sensitive to fermion vs
boson couplings and possible new particles in the loop

h

γ

γ

(a) W loop

h

γ

γ

(b) t loop

Josh Bendavid (CERN) Machine Learning 66



Pileup Conditions
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(b) 2016 13 TeV,< NPU >= 27

Large number of pileup interactions, interaction region extended in z
direction with σ = 5-6 cm
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Pileup in CMS

An event with 29 reconstructed primary vertices
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Pileup in CMS

Real-life event with HL-LHC-like pileup from special run in
2016 with individual high intensity bunches
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Primary Vertex Selection

Opening angle needed to calculate diphoton mass: need to know production
vertex location

No charged particles in general, primary vertex selection ambiguous with large
pileup

Per-vertex MVA to select hard interaction from pileup vertices, using hadronic
recoil balancing with diphoton system, and tracks from converted photons

A second MVA is trained to estimate for each event the probability that the
vertex choice is correct
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Photon Selection

Geometric and (scaled) transverse momentum pre-selection
cuts driven by detector acceptance and trigger requirements

Veto electrons

Need to discriminate between prompt isolated photons, and
fakes from jets (mainly collimated π0/η0 → γγ decays)

Two handles:

Shower Shape: Two photons from π0/η0 produce a wider EM
cluster on average.
Isolation: Select against additional particles produced in the jet
alongside the leading π0/η (some complications from pileup)
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Photon Identification: MVA

Photon identification intended to be uncorrelated with photon kinematics
(pT and rapidity), in order to avoid shaping the mass distribution and
allow kinematics to be optimally exploited by event level BDT

Signal training sample reweighted in two-dimensions (pT ,η) to match
background training sample at preselection level

Results not perfect (some residual η dependence in endcaps), but
sufficient (may investigate uboost/flatness boosting/multivariate
decorrelation or similar techniques in the future)
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Higgs→ γγ Results
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Overall σ/σSM = 1.16+0.11
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−0.08(syst.)+0.06
−0.05(th.)
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Higgs→ γγ Fiducial/Differential Cross Sections
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Monte Carlo Integration and Generation

Monte Carlo integration: Given an arbitrary/black box
multidimensional function f (x̄), find the integral

∫
f (x̄)dx̄

Monte Carlo generation: Given an arbitrary/black box
multidimensional function f (x̄), generate an unweighted set of
vectors x̄ with a probability density p(x̄) = f (x̄)/

∫
f (x̄)dx̄

Typical HEP use case: Given a numerical implementation for
a matrix element fully differential in incoming/outgoing
four-vectors, compute the total cross section (integral), and
generate a set of unweighted events
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Monte Carlo Integration

Canonical approach: Importance Sampling: Construct an
easily sampled from approximation to the target function

VEGAS: Product of adaptively-binned 1D histograms
FOAM: Sampling from a (single) binary decision tree → phase
space divided into hyper-rectangles with optimized boundaries
BDT: Sampling from an additive series of decision trees →
Gradient boosting used to improve performance wrt FOAM
just like in classification and regression problems
DNN: Sampling from a generative deep-neural network
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1D DNN Example with Analytic Solution
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In 1D the generative network is essential just learning the
inverse CDF of the target distribution (numerically)

Technically the function is x = CDF−1
pf

(CDFp(z))

For Cauchy distribution in this example, this can be computed
analytically and compared to the trained DNN result
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Monte Carlo Integration and Generation: Example
Function

S. Jadach, physics/0203033

This is the “camel” function from the original VEGAS paper,
which can be generalized to N dimensions
Factorized approach will not work well
Significant low-density regions which cannot be easily
excluded a-priori
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Some results - 4D Camel Function Integration

Comparing Vegas,Foam, GBRIntegrator, Generative DNN for 4-dimensional camel function (since this
appears in both VEGAS and Foam papers).

Given relative weight variance σw/ < w > after training/grid building, relative uncertainty on integral

evaluated with N additional events is σI /I = 1√
N
σw/ < w >

Algorithm # of Func. Evals σw/ < w > σI/I
(2e6 add. evts)

VEGAS 300,000 2.820 ±2.0× 10−3

Foam 3,855,289 0.319 ±2.3× 10−4

Generative BDT 300,000 0.082 ±5.8× 10−5

Generative BDT (staged) 300,000 0.077 ±5.4× 10−5

Generative DNN 294,912 0.083 ±5.9× 10−5

Generative DNN (staged) 294,912 0.030 ±2.1× 10−5

3x smaller weight variance to foam with 10x less function
evaluations

For this particular function VEGAS performance saturates at
relatively poor weight variance
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H → ZZ → 4`

“Golden channel” - Narrow mass peak on small background

Irreducible ZZ → 4` continuum background small and well
understood

(a) Main signal (b) Main background
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H → ZZ → 4`

Select 4 leptons of appropriate charge and flavour combinations (+FSR
recovery) with 40 < mZ1 < 120 GeV, 12 < mZ2 < 120 GeV

Electron acceptance: |η| < 2.5, pT > 7 GeV, Muon acceptance:
|η| < 2.4, pT > 5 GeV

Irreducible ZZ → 4` continuum background estimated from MC

Reducible Z + bb̄ and tt̄ backgrounds estimated from Z + same-sign

dilepton/Z + loose dilepton samples, with fake rates from Z + loose `

sample
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H → ZZ → 4`: Beyond the mass distribution

Higgs is a scalar → decay angles θ1,θ2,Φ, and lepton pair
masses mZ1,mZ2 provide additional discrimination against
continuum background
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H → ZZ → 4`: Beyond the mass distribution

Higgs is a scalar → decay angles θ1,θ2,Φ, and lepton pair
masses mZ1,mZ2 provide additional discrimination against
continuum background
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Matrix Element Likelihood Techniques

Common problem in machine learning: build a classifier to distinguish
signal from background given labeled training samples with features x̄

If probability densities for signal and background psig (x̄), pbkg (x̄) are
known a priori, then no machine learning is needed, can construct an

optimal classifier for hypothesis testing as eg
psig (x̄)

psig (x̄)+pbkg (x̄)

In high energy physics, often the probability density is known at the level
of the theoretical calculation and in terms of all initial/final state
kinematics

Can be used directly in cases where final state is fully reconstructed (eg.
no neutrinos), detector resolution effects can be neglected, and
all/dominant fraction of background is theoretically well-known

Otherwise painful analytic/numerical integration is needed to convert the
matrix element into a pdf relevant for detector-level quantities → use
Monte Carlo simulation + machine learning as an alternative
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H → ZZ → 4`: Matrix Element Likelihood Discriminator

For H → ZZ → 4`, final state is fully reconstructed, and
charged leptons have excellent momentum resolution in CMS
(O(%))

Matrix element likelihood discriminator constructed directly
from dilepton pair masses, plus decay angles as:

D =
psig (mZ1,mZ2, θ1, θ2,Φ|m4`)

psig (mZ1,mZ2, θ1, θ2,Φ|m4`) + pbkg (mZ1,mZ2, θ1, θ2,Φ|m4`)

Properly normalized conditional probability densities ensure
that D does not bias the four-lepton mass m4`
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H → ZZ → 4`: Matrix Element Likelihood Discriminator

Signal strength results extracted from 3d unbinned maximum likelihood

fit to m4` distribution with matrix element likelihood discriminant and p4`
T
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H → ZZ → 4` Results

Signal strength results extracted from 3d unbinned maximum likelihood

fit to m4` distribution with matrix element likelihood discriminant and p4`
T
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Multidimensional fit more sensitive than m4` alone
σ/σSM = 0.93+0.26

−0.23(stat.)+0.13
−0.09(syst.), 6.8σ observed

significance (6.7σ expected)
ML techniques also used for electron energy
reconstruction/per-event mass resolution estimate
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W /Z + H → bb

H → bb has high branching ratios but huge QCD backgrounds

To achieve reasonable S/B, select W /Z + H → `ν `` νν + bb
events with significant W/Z boost (pW

T /Z > 50 or 100 GeV
depending on the channel, with additional categories for
higher pt regions)

Events selected with two b-tagged jets
(secondary-vertex-based b-tag discriminant)

Significant backgrounds still remain from W /Z+jets, tt̄, and
diboson processes (WW /ZZ/WZ )

Complex mixture of backgrounds with real b-jets and
mistagged gluon/light quark jets
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W /Z + H → bb mass reconstruction

Energy of jets less precisely measured than charged leptons

b-jet energy reconstruction improved using BDT regression

Input variables included information on the relative
charged/neutral hadron/electromagnetic fraction of the jet,
details on the tracks and secondary vertex to correct for
variations in the energy response from fluctuations in jet
fragmentation, variation in track reconstruction efficiency and
resolution with secondary vertex position, etc

Additional variables on lepton kinematics included in case of
semileptonic b-decays (regression infers/corrects for missing
energy from the neutrino)

Missing transverse momentum directly included in regression
only in H + Z → `` channel (additional neutrinos from
W /Z decays break correlation with neutrinos from b-decays)
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W /Z + H → bb mass reconstruction

After regression, dijet
mass resolution is
about 10%

Mass
resolution/signal
purity not sufficient
for simple bump hunt

mbb is instead used
directly as input to
subsequent BDT (ie
the BDT is
intentionally strongly
correlated with the
mass)
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W /Z + H → bb Background scale factors

Various background components are not well-predicted by
simulation

Fit data/mc scale factors for different background
components in dedicated control regions for each channel

Background yields scaled from inverted b-tagging (W/Z+light
flavour), tighter b-tagging plus extra jets (tt̄), Mjj sidebands
(W/Z+bb̄)

W/Z+jets split into light flavour, light + 1 b, and 2 b
components since relative fractions are not well-predicted
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W /Z + H → bb Background scale factors

Example shown here for high pT

(MET> 170 GeV) H + Z → νν
control region (mbb sidebands)
enriched in W + bb by requiring
an additional lepton

Use of mass sidebands ensures
this control region is orthogonal
not just to H + Z → νν signal
region, but also to H + W → `ν
signal region

Scale factors extracted from
simultaneous fits to b-tag
discriminant distributions in
different control regions

Background normalizations are
shown post-fit (V + b has a scale
factor close to 2, resulting form
poor modeling of gluon spliting in
the simulation)

Scale factors and

statistical+systematic

uncertainties are used in the final

fit in the signal region
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W /Z + H → bb Signal Extraction

Even after determination of scale factors from control regions,
backgrounds have non-negligible uncertainty

Final sensitivity benefits from being able to further constrain
background normalizations in the final fit

Procedure:
1 Train four BDT’s for each channel: signal vs tt̄, signal vs

W /Z+jets, signal vs dibosons, signal vs (all) background
2 Cuts on background-specific BDT’s are used to partition final

signal vs (all) background distribution into four subsets

Josh Bendavid (CERN) Machine Learning 93



W /Z + H → bb Signal Extraction
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W /Z + H → bb Signal Extraction

Input variables for BDT’s:

Several kinematic variables for selected jets (including dijet
mass) and W /Z candidate (lepton, missing transverse
momentum kinematics)
Number of additional jets
b-tag discriminant value for selected and additional jets

Jet energy scale and b-tag discriminant uncertainties enter as
shape uncertainties for final BDT distributions
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W /Z + H → bb Signal Extraction Controls
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