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The Large Hadron Collider

@ Proton-proton collider
27 km in circumference,
located at CERN in Geneva

@ Design energy of 14 TeV

@ Superconducting dipole
magnets with a design field
of 8.3 T, cooled to 1.9 K
using superfluid helium
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The CMS Detector

SILICON TRACKER

CMS Detector "
~im?  ~66M channels

Microstrips (80-180um)

Pixels ~200m"  ~9.6M channels
Tracker - CRYSTAL ELECTROMAGNETIC

l— CALORIMETER (ECAL)
A 76K scintilating POWO, crystals
HCAL
Solenoid 7,
g PRESHOWER
. Silicon strips
Muons ~16m? ~137k channels

STEEL RETURN YOKE
~13000 tonnes

SUPERCONDUCTING

SOLENOID

Niobium-titanium coil

carrying ~18000 A FORWARD
CALORIMETER
Steel + quartz fibres

. HADRON CALORIMETER (HCAL) z2Kenannels

Total weight : 14000 tonnes Brass + plastic scintillator MUON CHAMBERS

Overall diameter :15.0 m ~7k channels Barrel: 250 Drift Tube & 480 Resistive Plate Chambers

Overall length :28.7m Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers
Magnetic field :38T
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The CMS Detector
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The CMS Detector: Some Challenges
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(a) Tracker Material Budget (pre-2016)
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Multivariate Analysis Techniques/Machine Learning at the

LHC

@ LHC data is valuable and finite

@ Physics processes have non-trivial and multi-dimensional underlying
kinematics of the produced particles

@ Space of observables is even further expanded by the interaction with and
measurement by the detectors

@ Need to maximally exploit the large amount of information in each
collision event

@ Example: Optimal discrimination between signal and background from
C . . 0. . - L4(%)
full multidimensional log-likelihood ratio Lr = )
@ Not known analytically in general, need to estimate from finite Data or
Monte Carlo “training” samples

@ Machine learning classifier typically implemented with Boosted Decision
Tree (BDT) or Artificial Neural Networks
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Overview

@ Brief intro to basic machine learning techniques
@ lllustrative examples of machine learning used in several
contexts:

e Physics object identification in CMS

e Physics object reconstruction in CMS

o High-level analysis (Higgs search/observation/measurements in
CMS)

o Monte Carlo generation/simulation

@ Future prospects
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Boosted Decision Trees for Classification

@ Intermediate nodes where a

o variable and cut value is
et i a selected to split events into two
subsets
2N 2N @ Terminal nodes are assigned a
Xj>c2 xj<c2 xj>c3 xj<c3 . .
response, in this case the
p(sig) psig) p(sig) relative signal probability 228
/\

xk>c4 xk<c4

@ Multidimensional likelihood
ratio is therefore approximated
by a piecewise-continuous
function over the multivariate
input space

p(sig) p(sig)

@ Decision Tree is a simple
structure consisting of a set of
connected “nodes”

@ Boosting: Construct an
iterative series of decision trees
to improve the overall response
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Boosted Decision Trees for Regression

@ Boosted Decision Trees can
also be used for a
multivariate regression
problem

Root
node

P& @ Replace log likelihood ratio
e e with generic function f(X)

e.g f(X) = <%> (%)

/7 \ / N\
Xj>c2 xj<c2 Xj>c3 xj<c3 .. ..
v N v N @ Minimize deviation between
E
Egen Egen #> ini
<Eg_w> <Eg_w> . <E7~aw training sample and
s regression function
<E> <E> @ Decision trees form a series
Eraw Erow

of piecewise continuous
approximations for the
function f(X) in the
multidimensional input space
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Gradient Boosting

o

pl .
- Data Data
— Regression
o — Regression °
€0 — Intermediate

(a) Single Tree (b) Gradient Boosted (~ 20 trees)

@ Decision trees form an additive series of piecewise continuous
approximations for the function f(X) in the multidimensional input space

@ Additive series can represent more complex functions than single tree
with a given number of nodes

@ Trivial example of Sine in 1d with relatively few trees
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Artificial Neural Networks

@ Inspired by biology, artificial neural networks
comprise one or more layers of artificial neurons
with weight, bias, and activation function with
many possible architectures for how the Hidden
neurons/layers are connected

@ Already the simple “densely connected” neural ('/ \(/
network with non-linear activation functions can N

serve as a universal function approximator in a

similar manner to BDT's

@ Such neural networks can be trained for
classification or regression problems with the
appropriate loss function

@ Training = finding optimal values for weights and
biases to minimize the loss function using some

variation of Stochastic Gradient Descent
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Electron Identification
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@ Reconstruction forms Superclusters extended in ¢ to collect conversion
legs/bremsstrahlung spread out by magnetic field

@ Soft conversion legs and associated bremsstrahlung may not reach
calorimeter or arrive too far to be included in Supercluster
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Electron Identification

@ Main sources of mis-identified electrons: 7% inelastic charge exchange,
~ conversions (prompt or from ©° — ~v), semi-leptonic heavy flavour
decays

@ Distinguish with isolation, and with electromagnetic shower profile, track
properties, and track-cluster compatibility

@ Many variables with non-trivial correlations — BDT classifier on

shower/track /compatibility variables

o 19.7 b (8 Tev) 1 197 b’ (8 Tev) g 19.7 fb* (8 TeV)
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(a) Transverse Shower (b) Track-Cluster Match (c)  Energy-Momentum
Width Match
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Number of events

Number of events
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Non-trivial correlations
such as material-induced
evolution of
discriminating variables
with n

forem: Fraction of initial
momentum radiated as
measured by track
reconstruction shown in

different slices of n
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Electron Identification

@ Many variables with non-trivial correlation
BDT classifier on shower/track/compatibility variables greatly improves

signal-background discrimination compared to rectangular cuts
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identification

@ Discriminating b-jets from light flavour (or c-jets) crucial for top physics,
many Higgs final states, and many BSM searches

@ b-jets are characterized by displaced tracks and possible reconstructed

secondary vertices

displaced

tracks charged

lepton

jet )

heavy-flavour
jet

pv T

jet
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b-jet identification

@ Relevant information on kinematics, displacement, etc is in
principle available for each reconstructed particle or secondary

13TeV, 2016 13 Tev. 2016 13Tev, 2016
£ = >
5 L C™Ms —bjets 5 [ CMs —bjets 3 CMs —bjets
sl Simulation o Simulation ~ °F Simulation
2 b cjets P wb - cjets s z cjets
T i+ jets. . 3 @+ jets ) = i+ jets
= Ep>206ev — udsg jets 2 p>20Gev — udsg jets £ Lo >200cev —udsg jets
wf 1
o 0 .
w0
i 10 =
a0 bt gy I ST R Miviviies L B i St S B e
2D IP/o of most displaced track 2D IP/o of second most displaced track Corrected SV mass [GeV]

(a) Highest 2d IP/o  (b) 2nd Highest 2d IP/o (c) SV Mass
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b-jet identification: “DeepCSV"

@ Most advanced fully commissioned b-tagging in CMS uses
densely connected deep (5 layers * 100 node) neural network
with some global information, plus detailed info from up to 6
tracks and 1 secondary vertex

Input (displ. sort.) dense output

up to 6x | charged part. 8 |
1o 1x |t |- b
p sec. ve bb

5x100
global, 12 F

M. Stoye, DS@HEP 2017
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b-jet identification: “DeepCSV"

@ All b-taggers validated in data, with efficiencies and mistag
rates measured from b/light-flavor enriched control regions

13 TeV, 2016 35.9 fb™ (13 TeV, 2016) Vs=13 TeV, Phase
2 wF 2 = - ooy 2,
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(a) DNN output (b) DNN output (c) ROC Curves
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b-jet identification: “DeepFlavor”

@ More recent developments incorporate more advanced network
architecture

@ Convolutional layers employed at the particle and secondary vertex level
to significantly increase the amount of available information and number

of particles/SVs

Input (displ. sort.) 1x1 conv. dense output

up to 25X |charged part. 16 |- 64/32/32/8 —

up to 25x | neutral part. 8 }—{32/16/4 }
350, 6x100
up to 4x | sec.vert. 17 64/32/32/8 c

global, 6

M. Stoye, DS@HEP 2017
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b-jet identification: “DeepFlavor”

@ More recent developments incorporate more advanced network
architecture

@ Convolutional layers employed at the particle and secondary vertex level
to significantly increase the amount of available information and number
of particles/SVs

Vs=13 TeV Phase 1

> FrmgrmT B mo e e
= E CM Slmulaflon Preliminary f
s [t events ]
g | AKd4jets (p. > 30 GeV) .
f‘Q’; 10 ~— DeepCSV |
E f — noConv f
B — DeepFlavour ]
107 E
1070 bt e £ “"' firs

0 0.1 02 03 04 05 06 07 08 09 1
b-jet efficiency
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b-jet identification: “DeepFlavor”

@ More recent developments incorporate more advanced network
architecture

@ Convolutional layers employed at the particle and secondary vertex level
to significantly increase the amount of available information and number
of particles/SVs

@ Relative gain increases with the pr of the b-jet (existing algorithms loose

discriminating power faster)
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Boosted top-jet identification
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identification of boosted
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decay products at
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convolutional layers over
a larger number of
particles and secondary
vertices within each jet
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Photon (Electron) Regression Energy Corrections

@ Photon energy reconstruction in CMS:
Ncrystals

Eejry = Fer(X) x> G(GeV/ADC) x Si(t) x ¢; x A

@ Two main components to photon energy resolution which at least partly
factorize:
@ Crystal level calibration (ADCtoGEV, Intercalibration,
transparency corrections)
@ Higher level reconstruction (local containment, global
containment, PU contamination)
@ Shower containment is complex and not clear if/how different
contributions factorize
@ Best performance is obtained with multivariate regression using BDT
with cluster 7, ¢, shower shape variables, local coordinates, and number
of primary vertices/median energy density as input
@ Regression is trained on real electrons/photons in Monte Carlo, using the
ratio of the generator level energy to the raw cluster energy, also provides
a per photon estimate of the energy resolution
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Evolution of Regression Energy Corrections in CMS

@ Photon energy regression in CMS initially trained using TMVA
BDT implementation

@ Physics performance was ok, but serious problems with size on
disk and memory consumption (1GB xml files!)

@ CMS has an in-house BDT storage format, persistable in root
file or conditions database, disk/memory/cpu efficient (tree
structure represented in flattened arrays, one inlined while
loop for evaluation). Can convert weights from TMVA or
produce with native BDT training tool written to exploit
parallelization, speed up training with large datasets, produce
more compact trees

@ Later CMS moved to “semi-parametric”’ regression
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Evolution of Regression Energy Corrections in CMS:

“Traditional” Regression

@ Multivariate techniques used in general to overcome lack of knowledge of
multidimensional likelihood using finite event samples

@ Traditional regression as used so far based on minimization of Huber loss
function for target prediction F(X) given target variable y = Epe/ERaw
for a set of input variables X (in our case cluster position, shower profile
and pileup variables)

_[2F-yy Fyl<6
S(F —yl = 8/2) |F—yl>0

@ Minimized the square deviation out to some cutoff (by default +10) and
the linear deviation beyond that

@ No built-in estimate of the per-photon resolution, accomplished with a
second training on an independent subset of the training sample with
target y = IECor/ERaw - ETrue/ERaw|
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Semi-parametric Regression

@ Start with ansatz that in any infinitesimal slice of phase space
in X, the energy response distribution is given by a double
crystal ball (ie gaussian core with power law tails on both
sides)

@ In terms of Eqye/ERaw the right tail (undermeasurement of
the energy) corresponds to the usual radiative losses, etc,
whereas the left tail (overmeasurement of the energy) comes
from pileup, etc.

p(.y|)_<) = DOUblecryStalBa” (.y|.u()_<)7 0()_()7 Ol/e&()_(), n/eft()_()7 affghf()_()v nright()_())
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Semi-parametric Regression

@ The log likelihood ratio for a training sample can be written

simply as
L=— > Inp(ylx)
MCPhotons
@ Minimize this loss function directly with gradient boosting,
where 11(X), 0(X), njest(X), Nright(X) are regression outputs
estimated by BDT's (using RooFit-based bdt-training tool,
which ensures proper pdf normalization, etc)

@ This gives a simultaneous estimate for energy correction and
resolution among other things
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Regression Performance: Simulation

Emooi ___ Photon Default: §2200 E ___ Photon Default:
o F 6,4 = 0.98 GeV © 2000 G, =1.75 GeV
1000 - Regression: S 1800F Regression:
o 5 ~ 0, =0.76GeV E 1600 F T o, =1.24GeV
S 800 14001
(TR i 1200
6001 10001
F 800F
400 s00]
200[- 400}
¥ 200F
| P N TR SR RN = PRI | DRI R Rt
5 120 130 740 00 120 130 140
m,, (GeV) m,, (GeV)
(a) Barrel ~ Unconverted (b) Barrel ~ at least one converted

@ Substantial improvement in diphoton mass resolution in
simulation compared to simpler parameterized corrections
(representative plots here)
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Energy Regression: Predicted Response Distribution

8 TeV

3 8 Tev
= S Barrel 5 10° T T o T T

o imulation > E ndcap

g1 H= vy, p,>25 Gev = o - Simulation

<  Photons 3 H- Yy, p > 25 GeV

3 10° —— Sum of pdfs S10°- + Photons

@10 : 3 % —— Sum of pdfs

0.8 1 12 14 16

18
Evue/Eraw

@ Semi-parametric regression provides a prediction for the full

lineshape (here showing simulation vs regression-prediction for
target variable Etrye/ERaw)

@ Total predicted pdf is given by sum of predicted lineshape for
each simulation event
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Energy Reconstruction: Data

x10°  CMS Preliminary Vs=13TeV,L=2.2fb" x10°  CMS Preliminary Vs=13TeV,L=22fb"
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(a) Barrel (b) Endcap

@ Reconstructed Z mass in data with different levels of energy
reconstruction and corrections
@ Progression clearly visible even with 2.5 GeV natural Z width
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Inside the corrections

8 TeV
0 o LA o O 8 0 N A
So_zs—CMS -4 < I s e s e s A
S T ] 8114pCMs Ns=7Tev L=4.981b" b
e [ o . 18 ]
5 I Simulation 1 ©1.12F+EB-Ro<0.94 — EE - R9<0.94 ]
“g Osz Unconverted or late converted ] S ~EB-R920.94 ~~ EE-Ro20.94
s I ¥ 1 © 11 E
.§ 0.151 Converted y 41 o 3
g :D ] ='1.08 ]
b H-vyy,p, >25GeV 15 1.06 E
0.1 — ]
[ 1 o 3
r 1 &104 ]
[ 15 9
0.05:— { 2 1.02 -
r b 1
L i P i A | PPTERIN ENEEIN IR | I BRI
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9

Inl

@ Ry = Esus/Esc is an effective, but not 100% pure conversion tagging
variable (electrons and photons treated separately, no explicit converted
vs unconverted distinction)

@ Correction vs 1 has a non-trivial correlation with Ry (and other shower
profile variables)
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Inside the corrections

8 Tev
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nl

@ Correction is parametrized and plotted with respect to the supercluster
energy, but the corrected energy can also be considered a non-trivial
weighting of supercluster, 3x3, 5x5, and other energy sums/ratios in input
(dynamic noise/pileup vs containment tradeoff as a function of shower
energy, inferred impact position, etc)
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Per-photon Resolution Estimate

c R
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(a) Correction (b) post-correction resolution

@ Strong, but non-trivial relationship between size of correction and
post-correction resolution (size of effect vs photon-to-photon fluctuations)
@ Per-photon resolution estimate mapped with the full granularity of the
multidimensional space used to derive the corrections
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Per-photon Resolution

Estimate
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@ In a resonance search, per-photon resolution estimate can be used to

. . (72 0'2

construct a per-event mass resolution estimate 2= = 1, /%61 4 ZE2
m 2 E; E

el 1 2

@ Can be used to select or categorize events to make optimal use of highest
resolution events (two unconverted photons in the center of the detector,
incident on the center of the crystal, far from module boundaries)
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Energy Scale and Resolution

Photon Energy Scale and Resolution in data measured with Z — ee
events, applying either final photon-trained regression corrections, or
equivalent electron-trained version

Monte Carlo is smeared to match data resolution

Data energy scale is adjusted to match Monte Carlo

Energy scale is determined very precisely from (millions of) Z — ee
events, remaining systematic uncertainties from electron-photon
extrapolation and extrapolation in energy

Overall systematic uncertainty on higgs mass measurement (dominated
by energy scale uncertainty) 0.12% (but per-photon energy scale
uncertainty varies according to detector region and photon quality)

197 b (8 Tev) 197 b8 Tev)

CMS

[ Barrel-Barrel 4 Data
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° R s ° S e
g ] 8V, ]
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Higgs Production and Decay at LHC
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F V=VeVyVe \\ 9
r ‘ q= udsct‘) . "' ~~~~~~~~ . ]
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M, [GeV] M, [GeV]
(a) Branching Ratios (b) Cross Sections

@ Variety of final states, would like to extract Higgs signal from
as many as possible
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Higgs— ~ Analysis Overview

e Higgs—diphoton search at CMS simple in principle: Search
for a small but narrow mass peak on a large, smoothly falling
background

@ Irreducible background from QCD di-photon production,
reducible background from QCD ~+jets and multi-jet
production with one or more jets faking a photon

q T8 T8 q
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Higgs— ~ Analysis Overview

3 -1
x10 19.7fb " (8 TeV)
Cms ¢ Data
vy
Cyjet
[ jetjet
[ Drell-Yan
[ JH-yy(125GeV) x5

Events/2 GeV

00 120 140 160 180
m,, (GeV)

Inclusive selection with coarse binning
My~ = \/2E1E2(1 — C05912)

@ Standard Model search is carried out in inclusive, vector-boson-fusion
tagged, W/Z, and tt associated production tagged channels

@ Analysis makes extensive use of multivariate techniques to optimize the
sensitivity, but basic principle of “bump hunt” is preserved
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Higgs— ~ Analysis Overview

‘, CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 GMT
Run/Event: 194108 / 564224000
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Higgs— ~ Analysis Overview

© 00

Primary Vertex Selection (Vertex Selection MVA)

Photon Selection (Preselection 4+ Photon-jet MVA
discriminator)

Multivariate Regression for EM Cluster corrections with
per-photon resolution estimate

Energy Scale and Resolution corrections from Z — ee
Event Categorization (MVA Discriminator)

Signal modeling from Monte Carlo with smearing and scale
factors applied

Background modeling from fit to data

Statistical Interpretation: Limits/Significance using maximum
likelihood fit to m.., distribution in event categories categories
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Photon ldentification: MVA

@ Start with a very loose pre-selection matching trigger requirements

@ Construct a multivariate discriminator using a BDT trained on prompt
photons vs fakes from jets in MC, using shower and isolation variables as
input

@ Only a loose cut on the ID MVA value, which is fed forward to the final
di-photon MVA

@ MVA output shown for Z — ee events (electron-veto inverted)

19.7 fb (8 TeV) 19.7 b (8 TeV)
o 10 & X10
S 20} CMS N, <15 | & CMSs Ny > 15
o o
2 2 sk
@ %)
€ { Data z t Data
& BrEz.eem g Clz-.eeMc
[ MC syst. 1ol EEI MCsyst
10f
sk
sk
o ! ! ! ! ! !
g .2 I ¢ 7
3 1 - '+ 3 1
< © B
8 08 | | ! . L 8 08 ! | ! L L
02 01 0 01 02 03 04 02 -01 0 01 02 03 04
Photon ID BDT score Photon ID BDT score

Josh Bendavid (CERN) Machine Learning 42



Photon ldentification: MVA

@ Different background components clearly visible in the ID MVA output

distribution (though knowledge of the relative fractions is not required for
the analysis)

19.7 fo™* (8 TeV)

3
8™ s 1T
S 80 —30 ¢
~ L
@ 1 0=
5 I 1
Q F —— H - yy (m=125GeV) i <
H @
o 60— i =1
% r ¢ Data 120 2
[a) [ #8& MC background i o
[ —=-VYy i o
40~ oeee y-jet | N
[ — jet-jet i
L —10
20— 1
ol g NG, N S S
-0.6 -0.4 -0.2 0 0.2 0.4

Photon ID BDT score
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Di-Photon MVA

@ Basic Strategy: Train di-photon mva on Signal and
Background MC with input variables which are to 1st order
independent of m,,

@ Goal is to encode all relevant information on signal vs
background discrimination (aside from m,, itself) into a
single variable

@ Can then simply categorize on Diphoton MVA output (5
categories, with cut values optimized against expected
limit/significance using MC background, plus additional
VBF/VH/ttH tagged categories with loose cut on di-photon
MVA)

@ Input variables cover kinematics (sans mass), per-event mass
resolution and vertex probability, and photon ID
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Di-Photon MVA Input Variables

@ Input variables cover kinematics (sans mass), per-event
resolution and vertex probability, and photon ID

@ Input Variables:

Q pi/my,

Q p7/myy

Om

O 7

© cosAg,,

Q om/m,, (Right Vtx Hypothesis)
@ om/m,, (Wrong Vix Hypothesis)
Q Putx

Q /IDMVA;

@ IDMVA,

@ 0, constructed from per-photon og estimate from regression,
adding also beamspot width contribution for wrong vtx
hypothesis

@ Per-event primary vertex selection probability p,: comes from
per-event vertex MVA
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Di-Photon MVA: Resolution

@ Since input variables are mass-independent, MVA is not
sensitive to mass resolution (since inclusive S/B in full mass
range does not change with resolution)

@ Correct this by weighting the signal events during training by
1/resolution, taking into account right and wrong primary
vertex hypotheses weighted by the per-event probability

_ Pvix 1—pyix
Q@ Wi = —
sig U;ght/m'y + Urgrong/m'y’y

right 0— O'
@ Im  _— 1 E1 E2
My~ +
wron, right \ 2 Vix 2
Mey~ My Mey~
e With o™ computed analytically from beamspot width and
calorimeter positions of the photons
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Di-Photon MVA Output

@ Lowest score region not included in the analysis

@ Diphoton MVA output for signal-like events can be validated with z — ee
events by inverting electron veto in the pre-selection

@ Analysis does not rely on MVA shape of Monte Carlo background

CMS Prelimi 35.9 fb™ (13 TeV,
CMS Preliminary 35.9 b (13TeV) xio} CoS Preliminary 3591 (13Tew
R A A LA A T R gy L ]
OSan7 ¢Data Simulation background SM H«yv,mH:IZSGeV S F Data B
310 [ jetjet I ooH 2 Lol [Jz - ' (simulation) ]
£ .

206 Ez{lﬂ Ezsp 5 [ [] simulation Stat. O syst. ]
w SN MC stat. uncert.  [JttH [*oey ]
1501 e -
1001 -
ol 1%
: : j C N B EEREON B
nnaflnnnnflonanffinnn sl annlofin Lol 0 0.2 0.4 0.6 0.8 1

0 010203 040506 07 0809 1 X
Transformed score of the diphoton BDT Transformed score of the diphoton BDT

(a) Full Selection (b) Inverted e-Veto
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Higgs— ~v7:

EM Cluster
(RAW Energy,

Shower Shape,
Local/Global
Coords)

Reconstructed

ECal and HCal
Deposits

Per-Photon

Estimate
Regression

Photon
Energy

(Cluster
Corrections)

Primary
Vertex
Reconstruction

Primary
Vertex

Conversion
Reconstruction

MVA

i

Primary
Vertex
Selection
MVA

Photon ID
MVA
(Photon/Jet
discriminator)

Categorized
Mass
Fits

Di-photon MVA

!

Results

@ Strategy: Process available information into quantities with straightforward physical interpretations in
order to combine per-event knowledge of expected mass resolution and S/B into a single “Diphoton MVA”

variable
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S+B Fits - 13 TeV

Events / GeV
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@ Plus 10 more

distributions for
exclusive-tagged

modes
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Event Categorization

CMS Preliminary H-yy
W oo+

M wH hadronic

W er w
W wH teptonic

Wooi  Wwg  Wew

zH hadronic Bl ZH leptonic

Untagged 0 IR .
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Untagged 2
[NERECER 610.1 expected events
A=l 10.0 expected events:
VBF 1
VBF 2 8 expected events
tH Hadronic

ttH Leptonic
ZH Leptonic
WH Leptonic
VH LeptonicLoose
VH Hadronic

VH MET

Signal Fraction (%)

35.9 fb™ (13 TeV)
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Width (GeV) S/(S+B)int 0,




S+B Fit - Weighted Combination

CMS Preliminary 35.9 fb™ (13TeV)
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| ATUNT: SYRA NI

100110 120 130 140 180 160 170

m,, (GeV)

Josh Bendavid (CERN) Machine Learning 51



W/Z + H — bb Signal Extraction

@ Even after determination of scale factors from control regions,
backgrounds have non-negligible uncertainty

@ Final sensitivity benefits from being able to further constrain
background normalizations in the final fit
@ Procedure:

@ Train four BDT's for each channel: signal vs tt, signal vs
W /Z+jets, signal vs dibosons, signal vs (all) background

@ Cuts on background-specific BDT's are used to partition final
signal vs (all) background distribution into four subsets
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W/Z + H — bb Signal Extraction

wn 10 T T T T T T ie} T T T T T T T T
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BDT output BDT output

@ Results extracted from fit to final BDT distribution,
partitioned using dedicated BDT's into individual background
and signal-enriched regions
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W/Z + H — bb Signal Extraction

@ Input variables for BDT's:

o Several kinematic variables for selected jets (including dijet
mass) and W /Z candidate (lepton, missing transverse
momentum kinematics)

o Number of additional jets

e b-tag discriminant value for selected and additional jets

@ Jet energy scale and b-tag discriminant uncertainties enter as
shape uncertainties for final BDT distributions
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Generative Deep Neural Networks

@ Significant recent work on generative deep neural networks in
the data science community, with image
processing/generation as a common use case
e.g arXiv:1406.2661

o Typical existing use cases:

e Have a fixed set of data, or a black box generator

e Train a generative model to produce samples following the
distribution of the training data (or in high dimensional cases
such as images, to produce “similar” images to those in the
training set)

@ Various architectures and training procedures: Variational
auto-encoders, auto-regressive models, generative adversarial
networks
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Generative Adversarial Networks

@ Generative adversarial networks train a deep neural network to generate
samples starting from a known prior distribution p(Z) which is easy to
sample from (e.g. an N-dimensional normal distribution)

@ The generative network G transforms the input samples to the output
space X, ie G(2) =X

@ A discriminator network D (e.g. a standard DNN classifier) is trained to
distinguish the generated samples from the training samples

@ Training proceeds iteratively such that the D is trained to maximally
discriminate and G is trained to minimize the discrimination power of D
until the generated samples follow the ~ same distribution as the training
set (MINIMAX problem /saddle point, difficult to train)

arXiv:1406.2661
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Simulating Calorimeter Showers

@ Accurate, physics-based simulation of calorimeter showers is available
with GEANT, but computationally intensive
@ Generative Deep Neural networks could be used to simulate showers

@ Goal is not a better simulation, but a computationally faster one

et GEANT [J e* GAN 10° e* GEANT [J e* GAN 10° et GEANT [ e* GAN
10° Yy GEANT [y GAN v GEANT [y GAN Yy GEANT [y GAN
Tt GEANT n* GAN .\ * GEANT n* GAN m 101 1t GEANT n* GAN
10-
1071
2 .
10-2 102 10
-3
10 103 10
10
107 107*
- 10°°
10 10°5
10-6 I 1o
100 10t 10% 10° 10! 10% 10° 10t
o 01 02

@ CaloGAN work in arXiv:1705.02355 achieves approximate
modelling of shower profiles, but 100,000x speedup for DNN
on GPU vs Geant on CPU

Josh Bendavid (CERN) Machine Learning LY4



Machine Learning Monte Carlo Integration

@ Use machine learning to improve Monte Carlo integration
efficiency in generators beyond what is achievable with VEGAS

e J. Bendavid, “Efficient Monte Carlo Integration Using
Boosted Decision Trees and Generative Deep Neural
Networks" https://arxiv.org/abs/1707.00028
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DNN 4D Camel Function Example

(a) Generated (2D (b) Generated vs (c) Integration
Slice) Prior (1D pair) Weight

@ 3x smaller weight variance to foam with 10x less function evaluations

Algorithm # of Func. Evals | o/ < w > ar/l

(2¢6 add. evts)
VEGAS 300,000 2.820 +2.0x 1073
Foam 3,855,289 0.319 +2.3x 107
Generative DNN 300,000 0.082 +5.8x107°
Generative DNN 294,912 0.083 459 x 10°°
Generative DNN (staged) 294,912 0.030 +2.1 x107°
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Some results - 9D Camel Function Integration

e Comparing Vegas, GBRIntegrator, Generative DNN for
9-dimensional camel function

Algorithm # of Func. Evals | ow/ < w > ar/l

(2e6 add. evts)
VEGAS 1,500,000 19 +13x 1077
GBRIntegrator 3,200,000 0.63 +4.5x 107"
GBRIntegrator (staged) 3,200,000 0.31 +22x107*
Generative DNN 294,912 0.15 +1.1x107*
Generative DNN (staged) 294,912 0.081 +5.7x 107°

@ 50x smaller weight variance to Vegas with 2x function evaluations (BDT)

@ DNN approach scales much better with dimensionality (> 100x smaller

weight variance than Vegas with 5x fewer function evaluations
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Outlook: Machine Learning Monte Carlo Integration

@ Large improvements with novel algorithms already
demonstrated on test cases

@ Exploring alternative DNN architectures including
auto-regressive models and convolutional elements

@ Integration into Madgraph_.aMC@NLO and tests with QCD
matrix elements in progress
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Conclusions and Outlook

@ Machine learning used extensively already in LHC Run 1, typically BDT's
and simple ANN's taking high level features as input, for classification
and also regression in some cases

@ Important to have regression/classification accuracy
estimates/uncertainties to make optimal use of events (weighting or
classification)

@ Integration into analysis and extraction of results as important as
underlying machine learning techniques

@ Underyling machine learning techniques transitioning to Deep Neural
Networks with a range of architectures, benefiting from active research
and technical implementations from broader data science community and
industry

@ For HEP: Enables much-higher dimensional problems: Use of lower level
or even detector-level inputs. Lots of work already underway

@ Personal interests: Likelihood-based/in-situ uncertainty estimates for
DNN's, calibration of simulations, interplay of ML with unfolding and
parameter extraction at high level of the analysis
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Conclusions (Energy Regression)

Many effects (local containment, material interactions, pileup) lead to
both shifts in energy scale and additional event-to-event fluctuations,
with non-trivial correlations between them

Transversely segmented calorimeters provide potentially large amount of
information about the shower properties which can be used to construct
in-situ corrections

Multivariate/machine learning techniques very effective for high
dimensionality problems with no (fully) parametric model but large
training datasets available

For optimal use of data, important to have fine-grained resolution
estimate along with optimized energy corrections

Has achieved significant improvements in energy resolution for
electrons/photons in CMS electromagnetic calorimeter with large payoff
for the Higgs discovery and properties measurements

Semi-parametric extension of existing algorithms developed as part of this
effort
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Further Considerations (Energy Regression)

In CMS we have so far trained multivariate corrections in Monte Carlo
simulation

Better simulation for training — better performance of corrections on
data

Test-beam data with known beam energy could also be used for training
in principle (and may be very useful as part of detector development and
characterization)

Ongoing work to use Z — ee collision data to train corrections in-situ
(but more complicated due to correlation between two electrons in each
event as well as natural Z width)

Corrections can always be staged, e.g., simulation-trained correction +
data trained “residual” corrections

Effective use cases for prediction of full lineshape in addition to Gaussian
resolution?

So far pulse reconstruction/out-of-time pileup has been treated as a
separate factorized piece. Algorithmic solutions are effective albeit
cpu-expensive, machine learning opportunities here?

Opportunities for further improvements with more modern machine
learning techniques like deep neural networks?
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Higgs— ~~ Decay

@ No tree-level hy~y vertex, decay proceeds through W and
fermion (top) loops which interfere destructively

@ Branching ratio to two photons very sensitive to fermion vs
boson couplings and possible new particles in the loop

Y Y

h=---- h----

(a) W loop v (b) t loop v
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Pileup Conditions

CMS Average Pileup, pp, 2012, /5 = 8 TeV CMS Average Pileup, pp, 2016, \s = 13 TeV

140
<> =21 r <> =27
> 120, 120

100f 100

10.04)
3
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1

80 80

60 60

40| 40

Recorded Luminosity (pb '/0.06)

Recorded Luminosity (pb~

5 40 45 40 5 40 45 O S + 20 20 I <0 «°
Mean number of interactions per crossing Mean number of interactions per crossing

(a) 2012 8 TeV,< NPU >= 21 (b) 2016 13 TeV,< NPU >= 27

@ Large number of pileup interactions, interaction region extended in z
direction with o = 5-6 cm
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Pileup in CMS

@ An event with 29 reconstructed primary vertices

Josh Bendavid (CERN) Machine Learning 68



Pileup in CMS

CMS Experirtient at the LHC, CERN
Datarecorded: 2016-Oct-14 09:33:30,044032 GMT,
Run / Event 71.S: 283171 /95092595 / 195

~130 vertices~

o Real-life event with HL-LHC-like pileup from special run in
2016 with individual high intensity bunches
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@ Opening angle needed to calculate diphoton mass: need to know production
vertex location

@ No charged particles in general, primary vertex selection ambiguous with large

pileup

@ Per-vertex MVA to select hard interaction from pileup vertices, using hadronic
recoil balancing with diphoton system, and tracks from converted photons

@ A second MVA is trained to estimate for each event the probability that the

Events / bin

@ Inclusive vertex selection efficiency ~80 %, but strong dependence on Higgs

vertex choice is correct

o 1‘9 7’ (8 Tev) 19.7 b (8 Tev)
g
Unpublished o 80— cMs
Z-pp 2
* R g 2o
[ % Correct vertex: data
[ ot venex smuton I Correct vertex: simiaton
02 q 4 Misassigned vertex:data
Wesssined vre daa 401 [ wisassigned vertex: smuaiion
L [ sassignevrex:smosion
0 lia%“‘_ j i
1 -05 - 0 02

o 05
Vertex ID BDT score
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Photon Selection

e Geometric and (scaled) transverse momentum pre-selection
cuts driven by detector acceptance and trigger requirements

@ Veto electrons

@ Need to discriminate between prompt isolated photons, and
fakes from jets (mainly collimated 7°/n° — v decays)

@ Two handles:

o Shower Shape: Two photons from 7%/7° produce a wider EM
cluster on average.

e Isolation: Select against additional particles produced in the jet
alongside the leading 79 /1 (some complications from pileup)
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Photon ldentification: MVA

@ Photon identification intended to be uncorrelated with photon kinematics
(pr and rapidity), in order to avoid shaping the mass distribution and

allow kinematics to be optimally exploited by event level BDT

@ Signal training sample reweighted in two-dimensions (pr,n) to match

background training sample at preselection level
@ Results not perfect (some residual n dependence in endcaps), but
sufficient (may investigate uboost/flatness boosting/multivariate
decorrelation or similar techniques in the future)
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Higgs— v~ Results

“““““““““““ R RRRaRRRRE SRR
ATLAS H-yy H==—=+H e Total
CMS Preliminary 35.9 1" (13TeV)
T 7 T T T
s Stat. Hoyy = Combined £ 1o
vy ==
[ Syst —®- Per process * 10
IO RS R
ATLAS H ~ZZ -4l —— oot - e
Heombined = 116 ¢ 7
Hyge | 0Sas m,, profiled
CMS H-2Z -4l == _
ATLAS and CMS w,| 22
ATLAS+CMS yy+4l === LHC Run 1 -
Lol [ I Lo Lo Wy | 2370 —e—
124 125 126 127 128 . ) . . )
m,, [GeV] z o 2 3 G B

=

@ (Run 1) Mass Measurement:
my = 124.70 + 0.31(stat.)+0.15(syst.) GeV

o Overall o/asy = 1.167015(stat.) T5- 50 (syst.) T9-52(th.)
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CMS Prellmlnary
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Monte Carlo Integration and Generation

e Monte Carlo integration: Given an arbitrary/black box
multidimensional function f(X), find the integral | f(X)dx

e Monte Carlo generation: Given an arbitrary/black box
multidimensional function f(X), generate an unweighted set of
vectors X with a probability density p(x) = f(x)/ [ f(x)dx

@ Typical HEP use case: Given a numerical implementation for
a matrix element fully differential in incoming/outgoing
four-vectors, compute the total cross section (integral), and
generate a set of unweighted events
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Monte Carlo Integration

@ Canonical approach: Importance Sampling: Construct an
easily sampled from approximation to the target function

e VEGAS: Product of adaptively-binned 1D histograms

o FOAM: Sampling from a (single) binary decision tree — phase
space divided into hyper-rectangles with optimized boundaries

o BDT: Sampling from an additive series of decision trees —
Gradient boosting used to improve performance wrt FOAM
just like in classification and regression problems

o DNN: Sampling from a generative deep-neural network
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1D DNN Example with Analytic Solution

generated 1,
analytic CDF!(CDF,(2)

= (Gaussan prior sample)

(b) Generated (c) Generated vs Prior

@ In 1D the generative network is essential just learning the
inverse CDF of the target distribution (numerically)

o Technically the function is x = CDF,!(CDF,(z))

e For Cauchy distribution in this example, this can be computed
analytically and compared to the trained DNN result
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Monte Carlo Integration and Generation: Example

Function

S. Jadach, physics/0203033
@ This is the “camel” function from the original VEGAS paper,
which can be generalized to N dimensions
@ Factorized approach will not work well
@ Significant low-density regions which cannot be easily

excluded a-priori
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Some results - 4D Camel Function Integration

@ Comparing Vegas,Foam, GBRIntegrator, Generative DNN for 4-dimensional camel function (since this
appears in both VEGAS and Foam papers).

@ Given relative weight variance o,/ < w > after training/grid building, relative uncertainty on integral
evaluated with N additional events is o /I = ﬁow/ <w>

Algorithm # of Func. Evals | ow/ < w > ar/l

(2e6 add. evts)
VEGAS 300,000 2.820 +2.0x107°
Foam 3,855,289 0.319 +23x 107"
Generative BDT 300,000 0.082 +5.8 x 107°
Generative BDT (staged) 300,000 0.077 +5.4x107°
Generative DNN 294,912 0.083 +5.9 x 107°
Generative DNN (staged) 294,912 0.030 +2.1x107°

@ 3x smaller weight variance to foam with 10x less function
evaluations

@ For this particular function VEGAS performance saturates at
relatively poor weight variance
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H— ZZ — 4¢

@ "Golden channel” - Narrow mass peak on small background
@ lIrreducible ZZ — 4/ continuum background small and well

understood
g ot
1 z/y ¢
AQ) o ¢
FORYAS .
q e
g 0~
(a) Main signal (b) Main background
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H— ZZ — 4¢

@ Select 4 leptons of appropriate charge and flavour combinations (+FSR
recovery) with 40 < mz; < 120 GeV, 12 < mz, < 120 GeV

@ Electron acceptance: |n| < 2.5, pr > 7 GeV, Muon acceptance:
In| < 2.4, pr > 5 GeV

@ Irreducible ZZ — 4¢ continuum background estimated from MC
@ Reducible Z + bb and tf backgrounds estimated from Z + same-sign

dilepton/Z + loose dilepton samples, with fake rates from Z + loose ¢

sample
CMS. f5=7Tev,L=5.1";(5=8TeV,L=19.7fb"
S TR R
© 35F * Data E
o F ]
o F W z+x Bl
cus FermiissintGeowicrn T 300 ; B
> < Dawm 2 f Ozy'zz
8357 [Im,=126 Gev E S 25F ]
e > o = ]
o 30 Oz g 2 [ Jm,=126 Gev ]
P
=
Q
>
a
0
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0 80 100 200 300 400 600 800 GeV
m, (GeV) m, (GeV)
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H — ZZ — 4(: Beyond the mass distribution

@ Higgs is a scalar — decay angles 61,0>,9, and lepton pair
masses mz1,mz, provide additional discrimination against
continuum background
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H — ZZ — 4(: Beyond the mass distribution

@ Higgs is a scalar — decay angles 61,02,9, and lepton pair
masses mz1,mz, provide additional discrimination against
continuum background

cms =776V L=511" [E=8Tev, L=197 1" cus E=7Tev,L=511" [E=8TeV, L=197 1" 1002 E=7Tev,L=511"; E=8Tev, L=197 1"
> L) T > LD RSN AN AR A N ARSI AAARR R
8 of 'P¥  1215<m, <1305Gev3 3 1215<m, <1305Gev * Da@ 8 gob 106<m,<141Gev E
o Wz o 8F 24x = © 1 W deETeV/7Tev
2 5F DOy R : g sof o mapereviTer
S IE ‘ 3 =R
€ T [Ome-1scev g 20F o 1w zeEey 7 Tev
[ " E| i} m,, =126 GeV
& 60F E
SE E s
L s0E 3
af E 3 -
3b E A 40F El
2 E 30F o El
& =
it E 20F 3
L L e L L Lol Il I
4 50 60 70 80 90 100 110 120 15 20 25 30 35 40 45 50 55 60 40 50 60 70 80 90 100 110 120
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Matrix Element Likelihood Techniques

@ Common problem in machine learning: build a classifier to distinguish
signal from background given labeled training samples with features X

@ If probability densities for signal and background psig(X), pekg(X) are
known a priori, then no machine learning is needed,(c;'m construct an
Psig (X

PRGETE

@ In high energy physics, often the probability density is known at the level
of the theoretical calculation and in terms of all initial/final state
kinematics

optimal classifier for hypothesis testing as eg

@ Can be used directly in cases where final state is fully reconstructed (eg.
no neutrinos), detector resolution effects can be neglected, and
all/dominant fraction of background is theoretically well-known

@ Otherwise painful analytic/numerical integration is needed to convert the
matrix element into a pdf relevant for detector-level quantities — use
Monte Carlo simulation 4+ machine learning as an alternative
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H — ZZ — 4¢: Matrix Element Likelihood Discriminator

e For H— ZZ — 4/, final state is fully reconstructed, and
charged leptons have excellent momentum resolution in CMS
(O(%))

@ Matrix element likelihood discriminator constructed directly
from dilepton pair masses, plus decay angles as:

Psig(Mz1, mz2, 01,02, ®[may)

D—
Psig(mz1, mz2, 01,02, ®|mag) + pprg(mz1, mz2, 01,02, ®|may)

@ Properly normalized conditional probability densities ensure
that D does not bias the four-lepton mass myy
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H — ZZ — 4¢: Matrix Element Likelihood Discriminator

@ Signal strength results extracted from 3d unbinned maximum likelihood

fit to mg, distribution with matrix element likelihood discriminant and p%—z

9. oMs fo=7Tev et fe=8Tev, Lato7 0 cms =7TeV,L=5.11b"; (5 =8TeV,L=19.7 1o
B SAMA I A I AT I (L=s1’; .
S F1215<m,<1305GeV a 1 =g 1
oS 8F =
= £ .Z+>( ] Q o9 0.25
o _fF K El
< 7; Oz'z E 0.8
o eF []m,=126GeV] 0.7 0.2
5E = 06
4; E 05 0.15
£ 1 0.4
3F B 0.1
£ B 0.3
2F H
F E 02 0.05
E g 0.1
0 t d 0 SR 3]
0 0.10203040506070809 1 120 130 140 150 160 170 180
i
Dixg m,, (GeV)
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H — ZZ — 4¢ Results

@ Signal strength results extracted from 3d unbinned maximum likelihood

fit to mae distribution with matrix element likelihood discriminant and p%

cms \5=7TeV,L=5.1fb"; (s=8TeV,L=19.7 fb
e Sy
8F121.5 < m, <130.5 GeV. 3

® Dpata 1

Czz E
[ 2 3
D qgH+iH (m,, = 126 Gev) ]

B verevhi (m, = 126 Gev) ]

Events / 10 GeV
~

Lo d
120 130 140 150 160 170 180 O 20 40 60 80 100 120 140 160 180 200
my, (GeV) P (Gev)

@ Multidimensional fit more sensitive than my, alone

o o/osm = 0.93703%(stat.) T35 (syst.), 6.80 observed
significance (6.70 expected)

@ ML techniques also used for electron energy




W/Z + H — bb

@ H — bb has high branching ratios but huge QCD backgrounds

@ To achieve reasonable S/B, select W/Z + H — (v ¢ vv + bb
events with significant W/Z boost (p/Z > 50 or 100 GeV
depending on the channel, with additional categories for
higher pt regions)

@ Events selected with two b-tagged jets
(secondary-vertex-based b-tag discriminant)

e Significant backgrounds still remain from W /Z+jets, tt, and
diboson processes (WW /ZZ/W2Z)

@ Complex mixture of backgrounds with real b-jets and
mistagged gluon/light quark jets

Josh Bendavid (CERN) Machine Learning 88



W /Z + H — bb mass reconstruction

@ Energy of jets less precisely measured than charged leptons
@ b-jet energy reconstruction improved using BDT regression

@ Input variables included information on the relative
charged /neutral hadron/electromagnetic fraction of the jet,
details on the tracks and secondary vertex to correct for
variations in the energy response from fluctuations in jet
fragmentation, variation in track reconstruction efficiency and
resolution with secondary vertex position, etc

@ Additional variables on lepton kinematics included in case of
semileptonic b-decays (regression infers/corrects for missing
energy from the neutrino)

@ Missing transverse momentum directly included in regression
only in H + Z — ¢¢ channel (additional neutrinos from
W /Z decays break correlation with neutrinos from b-decays)
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W /Z + H — bb mass reconstruction

o After regression, dijet
mass resolution is

T L L A S R BN

0 CMS Simulation = — Nominal 7
about 10% (s=8TeV 01 15.8 GeV (13.2%)]
— Regression

Z(I'T")H(bb), p? > 100 GeV ) o
o Mass T c:12.4 GeV (10.0%) ]

resolution /signal
purity not sufficient

0.8

Events / 2 GeV

for simple bump hunt 0.6 7
@ myy is instead used 0.4 -
directly as input to
subsequent BDT (ie 02 ]
the BDT is 0‘\”‘\”\”‘\‘”\‘ ]
intentionally strongly 60 80 100 120 140 160 180 200

GeV
correlated with the M 1GeV]

mass)
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W/Z + H — bb Background scale factors

@ Various background components are not well-predicted by
simulation

e Fit data/mc scale factors for different background
components in dedicated control regions for each channel

@ Background yields scaled from inverted b-tagging (W/Z+light
flavour), tighter b-tagging plus extra jets (tt), Mj; sidebands
(W/Z+bb)

o W/Z+jets split into light flavour, light + 1 b, and 2 b
components since relative fractions are not well-predicted
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W/Z + H — bb Background scale factors

@ Example shown here for high pr
(MET> 170 GeV) H+ Z — vv
control region (mp sidebands)
enriched in W + bb by requiring
an additional lepton

@ Use of mass sidebands ensures

~ T T T T T T —
this control region is orthogonal s . g‘j:‘a? Eg:gg E
. . o WV)H(bD) Vvz(ob) +udscy 4
not just to H + Z — vv signal g bR ekhed - W ]
=3 W+ bl ingle top B
region, but also to H+ W — (v “ B vves 8 neneen )
signal region E
@ Scale factors extracted from 1
simultaneous fits to b-tag
discriminant distributions in
different control regions
0
@ Background normalizations are 9,2
. 87 P S
shown post-fit (V + b has a scale 8oof L S g = g

factor close to 2, resulting form 03 04 05 06 07 08 08 1
poor modeling of gluon spliting in
the simulation)
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W/Z + H — bb Signal Extraction

@ Even after determination of scale factors from control regions,
backgrounds have non-negligible uncertainty

@ Final sensitivity benefits from being able to further constrain
background normalizations in the final fit
@ Procedure:

@ Train four BDT's for each channel: signal vs tt, signal vs
W /Z+jets, signal vs dibosons, signal vs (all) background

@ Cuts on background-specific BDT's are used to partition final
signal vs (all) background distribution into four subsets
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W/Z + H — bb Signal Extraction

wn 10 T T T T T T ie} T T T T T T T T
=3 cMS ® Data [ I3 < CcMS ® Data [ I
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& 4+ Cz+b6 Bvzed Il Cz+bb B3 vzeh)
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10
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-08 -06 -04 -02 0 02 04 06 08 1 05 055 0.6 O.GL.'?: 0.7 075 08 D.E.E: 09 0.95
BDT output BDT output

@ Results extracted from fit to final BDT distribution,
partitioned using dedicated BDT's into individual background
and signal-enriched regions
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W/Z + H — bb Signal Extraction

@ Input variables for BDT's:

o Several kinematic variables for selected jets (including dijet
mass) and W /Z candidate (lepton, missing transverse
momentum kinematics)

o Number of additional jets

e b-tag discriminant value for selected and additional jets

@ Jet energy scale and b-tag discriminant uncertainties enter as
shape uncertainties for final BDT distributions
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W/Z + H — bb Signal Extraction Controls

Entries /0.13

“ A s R
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e Final BDT distribution also validated in control regions
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