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O What we do with MU today

® Classification:

® 1dentify a particle & reject fakes C Preliminary 35.9 fb™ (13 TeV)
g10 EI I | 1 |+I I |Dla_ltal | 1 | 1 | 1 | 1 | 1 | I IE

o o - : Q - Simulation: -

® 1dentify signal events & reject background 2 H%Wa(n‘jHﬂZSGeV)mt -
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® Regression: Yk — -
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® Measure energy of a particle - -
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® We typically use BDTs for these task Eo ﬁl
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® moved to Deep Learning for analysis-specific 5 -
tasks 103:1 ******* —:
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BDT score of the photon ID

Centralised task (in online or offline reconstruction)
Analysis-specific task (by users on local computing
infrastructures) =
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Example: Mu for Higgs discovery

® We were not supposed to discover the Higgs boson as early as 2012

® Given how the machine progressed, we expected discovery by end 2015 /mid
2016

® We made 1t earlier thanks (also) to Machine Learning
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UJhat 1s ahead of us

® Deep Learning will be more and more central

® Analysis-specific applications poses no problem 1n terms of latency/memory/etc

® Challenges ahead will force us (willing or not) to use DL 1n many centralised
tasks

® but we are still far from being ready to a systematic usage of DL 1n production




HL-UHC: elephant i1n the room

This 1s when the R&D has to
happen

- Py Faoe oo 25 ||||M

LHC Today

» ~40 collisions/event ~200 collisions/event
» ~10 sec/event processing time » ~minute/even

processing time(
» (at best)Same computing resources as » (at best)Same computing resources as
today today e in
g ” CMS Simulation, ys = 13 TeV, it + PU, BX=25ns §
€ 16 :
® Flat budget vs. more needs = current rule- D ok TeckeceGument :
based reconstruction algorithms will not be & J ~ Treck Reco Runt :
" 12
sustainable g :
10
: 8 ;
® Adopted solution: more granular and complex I :
detectors » more computing resources needed )i ]
> more problems £ i
] ] ] R Ty 50 80 70
® Modern Machine Learning might be the way out PileUp

O (OWith nowadays software development




@)l Three layers of reconstruction

®A typical reconstruction chain has 4 steps (%)

» L1 trigger: local, hardware based, on FPGA, @experiment
site

» HLT: local/global, software based, on CPU, @experiment
site

» Offline: global, software based, on CPU, @CERN TO

ASVIdONI ADVdNOOV

» Analysis: user-specific applications running on the
grid

DATA VOLUME INCREASE




@l UJhat DU could do for us

® The solution to the HL-LHC problem: modern Machine Learning ..
» .. to be faster
» ... to do better

» ... to do more

® And this 1s a NEED for what happens 1n between data taking and data
analysis (trigger, reconstruction, simulation, ..)
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(/\_)/ Particle reconstruction as image detection

® Future detectors will be 3D arrays of sensors with regular
geometry

@ It would be 1deal to quickly reconstruct particles directly
from the 1image (which 1s what Deep Learning became famous for)

See contribution to NIPS worksho


https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

Proof of Principle: Particle ID

ROC curve for y vs. nt" classifier

o

® We tried particle ID on a sample of
simulated events

=
-

® one particle/event (e, y, m, m)

y signal efficiency
-
o0

(.41
@ Different event representations 0.2 — DNN (cells)
~— DNN (features)
_ 00/ | — BDT
® high-level features related to event 00 02 04 06 o8 10
shape (moments of X,Y, and Z i background efficiency
projections, etc) ROC curve for e vs. n* classifier
> 1.0
. -
® raw data (energy recorded 1n each cell) 2

® Pre-filtered pion events to select the
nasty ones and make the problem harder

¢ signal effi
-

0.7
- = DNN (cells)
o —— DNN (features)
0s — BDT
See contribution to NIPS workshop T 00 0.1 02 03 04 05

10 n* background efficiency


https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

Proof of Principle: Energy Regression

® 3D Convolution NN can learn true
energy of an incoming particle
from the recorded hit pattern
® Correctly reconstruct energy

® ECAL performances better than
HCAL (as expected)

@ m resolution ~ /2 y resolution
(as expected)

® No high-level knowledge of physics
and/or detector features

® used only RAW data as inputs

@ In real 1ife, this could be used
offline, at HLT, and (maybe) even
at L1
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Flatten
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@M Proof of Principle: Energy Regression

» Competitive and meaningful 4 - * Photons
resu 7 S “ Electrons
—_— I— - ® Neutral Pions
- . . — M Charged Pions
» Processing time reduced by >
103 wrt traditional o
approaches g 3m‘
B (W

@ In real 1i1ife, this could be 10 -
used while selecting events %
1n real time (“trigger”™) ..

0 100 200 300 400 500

Energy (GeV)
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® With x|10 more data o
being stored during
HL-LHC, we will need
> x |10 more Monte / |
Carlo to do precision i LA
physics ' .

® T[his will not be
possible with current  ..” - -

= = Shower longitudinal section

generation techniques -+ - - SR p—

eeeee

® Generative models
might provide a way
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Cleaning up selected sample

A typical example: leptonic triggers

No selection @ tt

lepton Isolation + pT threshold
W4jets

@ at the LHC, producing an i1solated
electron or muon 1s very rare.
Typical smoking gun that something epton P> 25 Gev
Thteresti ng happened (Z’ W’ top’H PF based isolation < 20%
production) ~3.2 MHz ~600 Hz
QCD: 3,240,000 Hz QCD: 255 Hz
W+jets: 1,170 Hz ngets: §3I_(I) Hz
. . Ttbar: H :
® Triggers like those are very central A + Thar 2Hz
to ATLAS/CMS physics CMS%/ T e
N i ‘ Orbi/Crossing: 28960009 / 815
® The sample selected 1s enriched 1n = |

interesting events, but still 3\

contaminated by non-interesting ones

® Contamination can be reduced with a
DL classifier that rejects obvious
false positives looking at the full
event, not just at the lepton

See contribution to NIPS workshop -



https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf

Event Representations

tt -
Deep
— Topology 0
Classifier o

Abstract Image

Calo Image Particle Sequence High-level Feature

Classifier Classifier Classifier Classifier

Raw images of the aA rt?c?lggigi:noi\s Based on an abstract Use high-level features
calorimetry hits fed to P B : representation of the as inputs to a fully
a convolutional NN. nput to a rectrren reconstructed particles connected NN.
NN. as an image to feed to
Similar to https:// a convolutional NN.

aI‘X'iV.OI‘g/abS/l702.00748 Insp-ir'ed fr'om httns://
arxiv.org/abs/1708.07034
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https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1702.00748

o1 UJhat the event looks like

® sparse 1mage with many pixels
® hot the kind of 1mage that CNNs usually deal with

@ st1l1l, reasonable performances (AUC~90%) can be
obtained

Charged Particles ” photons




Event Representations

DenseNet on the
abstract 1mage

Con
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DenseNet121

Recurrent nets on the
- list of particles

@ (LSTM, GRUs, etc)

QO-OOO
0000000000
OOO000-00000
OOO00-00000

Fully-Connected classifier on
physics-motivated features




@j\ Proof of principle: trigger cleanup

® With non-trivial event

i 1.0 -
representation, can drop (7
false positives by factor 10
with 99% true-positive rate 0.8 -
o
Loose Trigger Cut ® i RNN CUT -
W+jets ; 0.6
v V g
9
O
g
(48]
-
o
(V)
RNN Cut
At 999% ttbar Efficiency
0.2 -
~600 Hz ~44 Hz —— Particle Sequence Classifier (AUC): 0.9958
QCD: 255 Hz QCD: | 22.4 Hz ——— Abstract Image Classifier (AUC): 0.9875
W+jets: 230 Hz \_Il_\:gle'fs' iogé :Z —— High-level Feature Classifier (AUC): 0.9735
Ttbar: 2 Hz ar. LYz 0.0 - —— Calo Image Classifier (AUC): 0.9054
0.0 0.2 0.4 0.6 0.8 1.0

Background Contamination (FPR)

See contribution to NIPS workshop

19


https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf

Sl The importance of belng fast

@ Online vs offline
reconstruction differences

are limiting our discovery 0 l
reach i
+ .
® Seen offline, the online § W l >
selection is a not-flat £ | . Analyses star s
response function 5 | s efficient B
: e
® Forces us to work on tails ¢ ; =
of event distribution, !
I"edUC'l.ng sensitivi ty to g;(e;g_l\zents ;zre:hccjoﬂected (?It
new phyS'iCS 1sk cost) ahd never use
_1>

® Not optimal use of
resources

Offline Energy

=0



The importance of belng fast

® Having the same reconstruction |
at L1/HLT/Off1ine would help A ! N\
us to recover this lost | |

sensitivity .. q
|
® .. and to free resources that S .
could be spent otherwise 5 Analyses start where -
(e.g., looking for tricky new < trigger is efficient B
physics scenarios) = ;
£ >
® This cannot be done exactly > # =
(offline code too slow)
All collected events are
® But it could be done “in NG
average” (offline response
modelled by ML algorithm) S P

Offline Energy

=1



The frontler: bring DL to L1

@ The L1 trigger 1s a complicated
environment

Keras

® decision to be taken 1n ~10 psec TensorFlow

PyTorch

/L 1~ hls 4 ml

@ only access to local portions of
the detector

compressed
model

® processing on Xi1linx FPGA, with
l1mi1ted memory resources

CO-pProcessors
® Some ML already running @L1 s _,<

® CMS has BDT-based regressions 77 RTL design
COded aS 700k_up tab]es Yuneconfiguration/

® Working to facilitate DL solutions —

@L1 with dedicated Ilibrary

HLS4ML: CERN/FENAL/MIT joint effort
= 1o debut at Connecting The Dots 2018 in Seattle (March 2018)




The frontier: bring DU to L]

® Work 1s still preliminary 16 inputs = Lg tagagr. auc = o1 g% /
64 (relu || L - 2 /
. . 32 (relu) . —— j_ttagger, auc = 93.7% /
® Take as use case jet tagging Y ruly comectedseer £ Fyll model
5 (softmax) ‘§
® get a jet ALl
@ from 1ts shape (jet substructure) tell which ? HLS4ML Preliminary
je t -i t 7.5 10 OjO Oi2 O 4 0 6 0.8 1.0

sig. efficiency

® Problem solved with large network (cannot fit = s s
FPGA) : : E:I t;aggggeert’aauucc: 9923. zi;f
. . : 2| After pruning:

® Implementing pruning solutions to keep only  150% compre

relevant neurons takes
““1in 60°cloc 5(300 ns)
® Further decrease resources with practical tricks _
e e s . HLS4ML Preliminary
& thumb rules (e.g., divisions are expensive) R P

sig. efficiency

HLS4ML: CERN/FNAL/MIT joint effort
To debut at Connecting The Dots 2018 in Seattle (March 2018)
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Data Quality Monttoring

® When taking data, >1 person watches
for anomalies 1n the detector 24/7

104

® At this stage no global processing of ;
the event 0 0 20 30 40 50

Channel

B
Raw Occupancy (Run: 273158, W: 0.0, St: 2.0, Sec: 12.0) -

® Instead, local 1information from
detector components available (e.g.,
detector occupancy 1n a certain time
window)

19 MB4 4 0 10 20 30 40 50
Channel

C
Raw Occupancy (Run: 275310, W: 1.0, St: 2.0, Sec: 7.0)

120

0 10 20 30 40 50
Channel
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Two 3 roaches

Fully connected

3x1 convolutions
—_—

® Given the nature of these T, e N
data, ConvNN are a natural ! e ONRS
analysis tool. Two \ o

approaches pursued

N
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@ Classify good vs bad e L

10 45x1 feature maps

data. Works if failure o
mode 1S known N

Mtions . w x4 upsampling 3x1 convolutions
® Use autoencoders to T e e e
assess data “typicality”. :
. |§ f o/ li\\\
Generalises to unknown | s Rl I

u /11l
:’ "/’/. '/"/’"\ 7
it 4 46x12 feature maps
1a77ure modes A :
"

0 hidden units ®
A. Pol et al., to appear soon Al i 448 i i
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TWwo approaches

Receiver Operating Characteristic (ROC)

® Given the nature of these i e
data, ConvNN are a natural -
analysis tool. Two 2" v s 7
approaches pursued 2o - S0
@ C7aSS-ify gOOd V'S bad 0.0 CNN working point

000  0.02 004 006 008  0.10 0.12 0.14

da ta . WO ["ks 'i "C "Ca 'i 7ur~e Fall-out (TNR)
mode 1s known

m—Layer 5 at 32001

® Use autoencoders to & e
assess data “typicality”. i,
Generalises to unknown 5 5.
failure modes 20

A. Pol et al., to appear soon 0 : o e o e "

MSE in layer 9

=2/



Ol Daota Quality Certification

@ AU toen CO de r_bas ed 1 - C 7 aSS app roa Ch Reconstruction error for different classes
generalises to later stages of quality | | i

assessment .
® after reconstruction of the events, .
event reconstruction allows a global
assessment (w.g., looking at Lo
electrons, muons, etc rather than

hits 1n the detector) 10

Reconstruction error

0 5000 10000 15000 20000 25000 30000
Lumisection

= ‘p§ Jeis

@ A global autoencoder can spot all .
these features ] — W

muons
— pf_jets2
— pf_mets
— nvtx
— cal jet_mets2

® Monitoring 1ndividual contributions
to loss function (e.g., MSE) one can
track the problem back to a specific
physics object/detector component

1000 1500 2000
Features of the lumisection

F. Siroky et al., to appear sooner or later



[ roadmap towards HL-LHC

LS1 EYETS

LS2 14 TeV LS3 14 TeV
13-14 TeV

energy

injector upgrade oto7x

splice consolidation cryogenics Point 4 . nominal
7 TeV 8 TeV button collimators Sc':f' dispersion ir%gril(l:qi]gn HL-LHC installation luminosity
R2E project suppression regions |
collimation 9 .

205 ||} ] _
radiation

damage

N

2 x nominal luminosity ;
|

73% ‘ -
nominal nominal luminosity

luminosity | experiment beam pipes /“‘
/ m 1 50 fb-1 m IuminOSity

| | experiment upgrade -

experiment upgrade phase 2

® We need to be ready by 2025 (High-Luminosity LHC)

® LHC Run 3 (2020-2022) 1s the ultimate demonstration opportunity
® produce proof-of-principle studies on simulations and open datasets
® bring ML expertise at CERN and 1n the experiments

® within experiments, develop/test/deploy ML solutions to solve technical tasks
29
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Practical infos

® CERN Data Science Seminars

® LHC 1ML working group

® Data Science @HEP workshop series

@ CERN 2015

® S1imons Foundation (New York) 2016

® Fermilab 2017
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https://indico.cern.ch/category/9320/
https://iml.web.cern.ch
https://indico.cern.ch/event/395374/
https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confId=102
https://indico.fnal.gov/event/13497/

