Simulations of EM Shower Acceptance

Wenjie Wu, Jianming Bian

University of California, Irvine

September 16, 2021

Introduction

- - LAr radiation length is 14 cm
 - LAr density is 1.4 g/cm³
- Use Geant4 to simulation electron showers in a LAr detector to study EM shower acceptance
 - **Detector Size (cuboid)**: 1.5x1.5x7 or 1x1x7
 - 300 GeV
 - Electron direction: (0, 0, 1). Currently no beam spread or angle smearing
 - Vertex of electron is uniformly distributed along Z-axis (0, 7000) mm
 - PhysicsList used in the simulation: FTFP_BERT
- Simulation of a liquid scintillator detector as a comparison
 - LS (LAB-based) radiation length is ~50 cm, density is 0.859 g/cm³

• Liquid argon has excellent EM-shower and muon ID and could be a good candidate for the detector

Electron energy in the simulation: 200 MeV, 500 MeV, 1 GeV, 5 GeV, 10 GeV, 50 GeV, 100 GeV, 200 GeV,

Detector Construction in Geant4

- A simple cuboid detector made up of LAr
 - Size: 1.5x1.5x7 and 1x1x7

Wenjie Wu (UCI) | Simulations of EM Shower Acceptance

- Electron energy in the simulation: 200 MeV, 500 MeV, 1 GeV, 5 GeV, 10 GeV, 50 GeV, 100 GeV, 200 GeV, 300 GeV

Energy deposition

- Size configuration: 1.5x1.5x7 m
 - Left: The fraction of energy deposited inside the LAr region V.S. electron vertex Z
 - Right: Maximum vertex Z that can contain 90% (95%) of the energy V.S. true electron energy

Wenjie Wu (UCI) | Simulations of EM Shower Acceptance

UCIRVINE

Energy deposition

- Similar plot for the size configuration: 1x1x7 m
 - Left: The fraction of energy deposited inside the LAr region V.S. electron vertex Z
 - Right: Maximum vertex Z that can contain 90% (95%) of the energy V.S. true electron energy

90% and 95% energy containment

- Comparison of two size configurations
 - Two configurations have almost the same acceptance for EM shower up to 300 GeV
 - 300 GeV EM Shower with 95% E containment: z < 4.4 m, 90% E containment: z < 4.8 m

1x1x7

• The distribution of the fraction of deposited energy in the LAr at different energies

1.5x1.5x7

• Comparison of two size configurations at different energies

• Comparison of two size configurations at different energies

Energy deposition in Liquid Scintillator

- Size configuration: 1.5x1.5x7 m
 - LS is hard to contain high energy (>100 GeV) EM shower

Wenjie Wu (UCI) | Simulations of EM Shower Acceptance

UCIRVINE

Energy deposition in Liquid Scintillator

- Comparison of two size configurations
 - 1.5x1.5x7 has slightly better acceptance than 1x1x7
 - 100 GeV EM Shower with 90% E containment: z < 0.44 m

• The distribution of the fraction of deposited energy at different energies

1x1x7

Wenjie Wu (UCI) | Simulations of EM Shower Acceptance

1.5x1.5x7

Comparison of two size configurations at different energies

Comparison of two size configurations at different energies

Summary

- EM shower
 - 300 GeV EM Shower with 95% E containment: z < 4.4 m, 90% E containment: z < 4.8 m
- This simulation only have electrons in the +Z direction, so we might need to consider more scenarios like beam spread and angle smearing in order to have a more comprehensive result

• LAr detector with the size of 1.5x1.5x7 (or 1x1x7) can effectively contain high energy

