Detecting Dark Matter nuclear scatterings in FLArE

Sebastian Trojanowski

(strojanowski@camk.edu.pl) AstroCeNT, Nicolaus Copernicus Astronomical Center Polish Academy of Sciences

> BNL discussion Sep 16, 2021

B. Batell, J.L. Feng, A. Ismail, F. Kling, R.M. Abraham, ST, Phys.Rev.D 104 (2021) 3, 035036 Also: B. Batell, J.L. Feng, ST, Phys.Rev.D 103 (2021) 7, 075023

ASTROCENT

European Union European Regional Development Fund

FLArE physics goals

Standard model

Neutrino measurements

- >100k high-energy scatterings (E ~ few hundred GeV)
- >1k tau neutrino events

Several x 10^3 non-DIS events - first measurements, good neutrino spectrum estimators

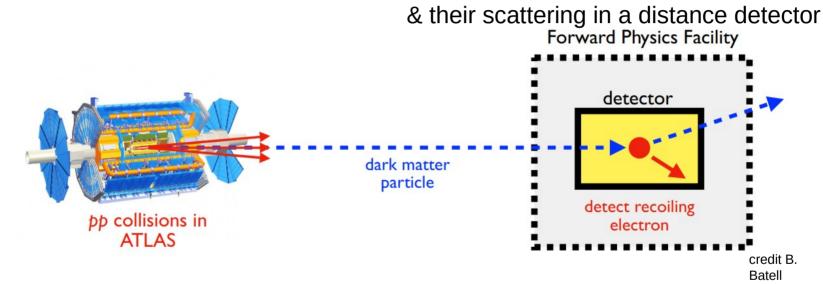
Implications for QCD, cosmic-rays

Beyond the Standard model

THIS TALK

Light Dark matter (DM) search

- probing thermal targets,
- complementary to DM DD
- different signatures prefer low energy deposition

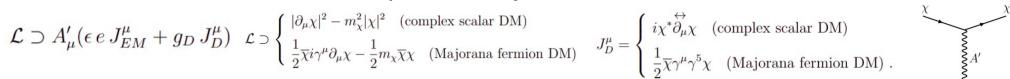

BSM neutrino physics:

(up)scattering to heavy neutral leptons 2011.04751, 2109.05032 Non-standard interactions EFT 2105.12136

Other searches (LLP decays,...)

Direct light DM detection at the LHC

• We focus on LDM particles produced in the far-forward region of the LHC


- This search is highly complementary to the traditional DM direct detection searches:
- probe of relativistic interaction rates of LDM (DM energy ~ a few hundred GeV)
 - [collider-boosted DM]
- the search is not sensitive to the precise abundance of χ DM component

(possible variations in cosmological scenario)

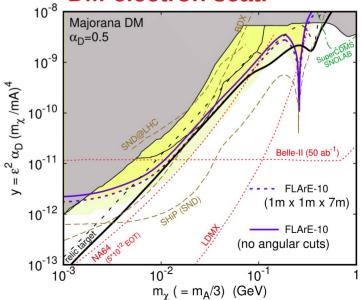
[collider-produced DM]

DM relic targets

Benchmark scenarios: dark vector portal to Majorana or scalar DM

<u>Relic target line: (thermal) $\Omega_{y}h^{2} = 100\%$ DM</u>

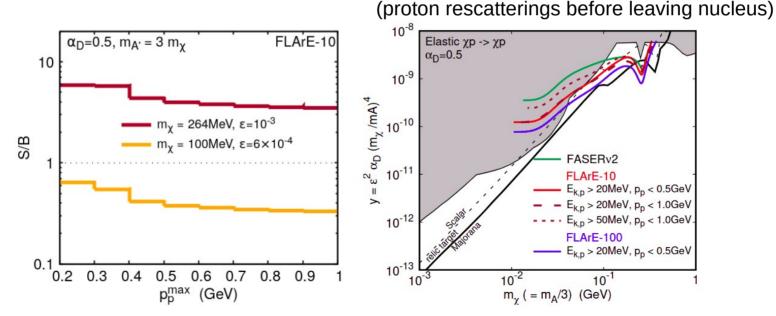
- above relic target line: underabundant χ DM


- below relic target line: too much χ DM (non-standard cosmology needed)

Neutrino-induced BG suppressed based on electron identification and (low) EM energy deposition

in the detector

Good angular resolution is not essential

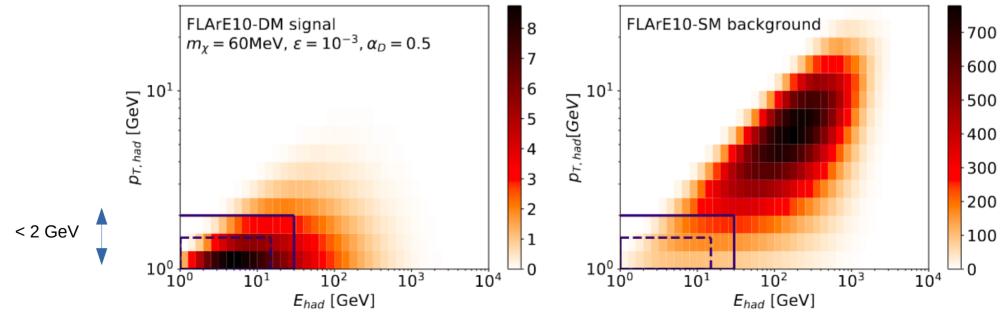

DM-electron scat.

χ χ φ ρ ρ

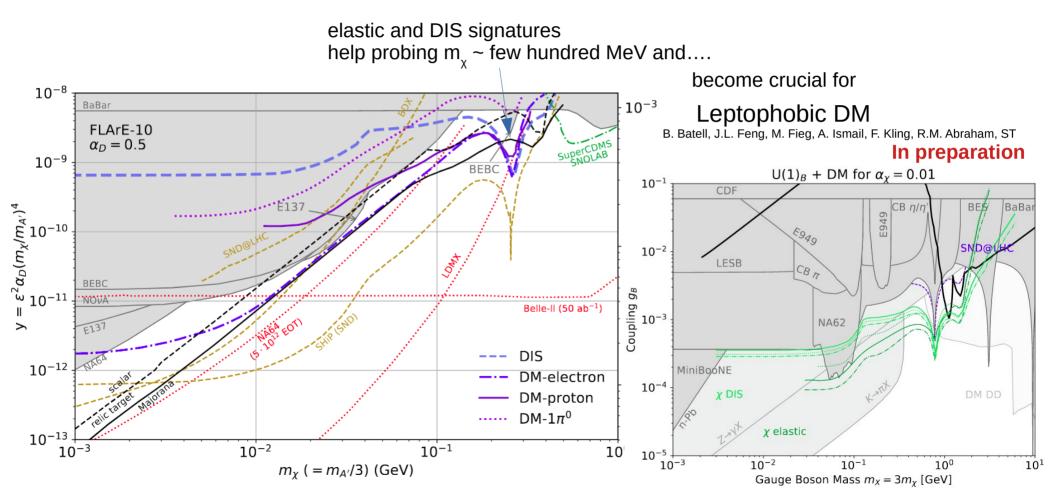
DM-nuclear scatterings – elastic

- DM can also elastically scatter off nucleons
- Signature: single proton track with $\rm p_{_{\rm D}}$ < 500 MeV or 1 GeV (no angular cut)
- We require $E_{k,p} > 20$ or 50 MeV
- Impact of Final State Interactions (FSI) is taken into account

DM nuclear scatterings – DIS


DM can also scatter non-elastically: a) resonant pion production
b) DIS (more tracks)

• BG from neutrino NC scatterings can be suppressed based on hadronic E and p_{τ} measurements


χ

A

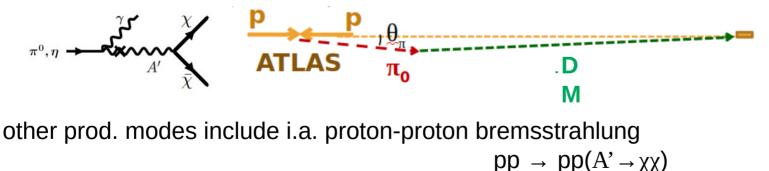
• Parton energy and momentum used as a proxy, more detailed detector simulations needed

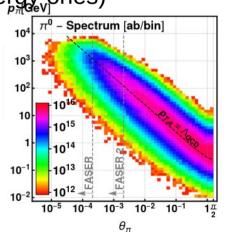
Expected sensitivity reach

Conclusions

• LHC can be a light DM factory, most of high-energy such dark species will go down the beam pipe and avoid detection

- These light DM particles can scatter off electron or nuclei in the far-forward detectors
- Probing DM interactions in the relativistic regime; complementary to DM direct detection
- Complementary DM signals, possiblity to probe leptophobic DM;


Essential experimental features for DM search:


- ability to disentangle electrons/protons and identify single tracks
- sensitivity to low-energy signals even below GeV

- timing info to reject muon-induced BG

Light DM at the LHC

- LHC can be a very efficient light DM (LDM) factory
- LDM direct detection requires suppressing SM backgrounds difficult in typical LHC experiments
- ...but many LDM particles will go down the beam pipe (especially high energy ones) Example: DM production in rare decays of light mesons $10^4 \left[\frac{\pi^0 - \text{Spectrum}}{10^4} \right]$

FASER Collaboration, hep-ph/1811.12522, hep-ex/1908.02310

• Far-forward search for light long-lived particles and studies of high-energy neutrino interactions

Neutrino-induced BG

	Elastic $\chi p \to \chi p$	ν -induced backgrounds	DM: $m_{\chi} = 100$ MeV, $\varepsilon = 6 \times 10^{-4}$		
$FASER\nu 2$	$p_p > 300~{\rm MeV}, p_p < 1~{\rm GeV}$	310	34		
	$E_{k,p} > 20$ MeV, $p_p < 500$ MeV	100	37		
	$E_{k,p} > 20$ MeV, $p_p < 1$ GeV	125	42		
	$E_{k,p} > 50$ MeV, $p_p < 1$ GeV	120	23		
	$E_{k,p} > 20 \text{ MeV}, p_p < 500 \text{ MeV}$	810	260		
	$E_{k,p} > 20$ MeV, $p_p < 1$ GeV	1050	310		
	$E_{k,p} > 50$ MeV, $p_p < 1$ GeV	1010	165		

DIS	ν -induced backgrounds			DM: $m_{\chi} = 60$ MeV, $\varepsilon = 10^{-3}$			DM: $m_{\chi} = 188 \text{ MeV}, \varepsilon = 10^{-3}$		
Detector	no cuts	loose cuts	strong cuts	no cuts	loose cuts	strong cuts	no cuts	loose cuts	strong cuts
$FASER\nu 2$	154k	7.4k	2.9k	700	335	210	440	170	100
FLArE-10	82k	5k	2k	380	185	116	250	95	55
FLArE-100	528k	38k	15k	2.3k	1.1k	748	1.5k	615	361