UPDATES FOR THE FORWARD PHYSICS FACILITY

BNL Discussion

Jonathan Feng, UC Irvine

16 September 2021

SLIDE FROM JULY DISCUSSION

EXAMPLE SCHEDULE

- Not even "very preliminary" !
- Assumes new cavern option for the FPF.

Shutdown / YETS Proton physics Ion physics Commissioning with beam Hardware commissioning / magnet training

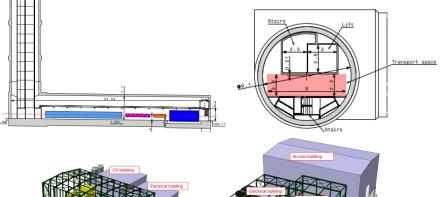
	2021	2022	2023	2024
	JFMAMJ JASOND	JFMAMJ JASO	NDJFMAMJJASC	ONDJFMAMJJASO
LHC	Long Shutdown	2		Run 3
Snowmass/	Snowmas	s	P5	
P5/LHCC	SP White	Pap LHCC LOI	LHCC TDR	
Expts	Expt De	sign	R&D	
		CDRs	TDRs	
FPF				

- Starting when the HL-LHC starts is necessary to maximize physics. A long way to go, but experiment design in coming year is a crucial step.
- Would welcome lab help for designing FLArE, DOE reviews, etc.

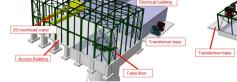
8 July 2021

FPF "SHORT PAPER"

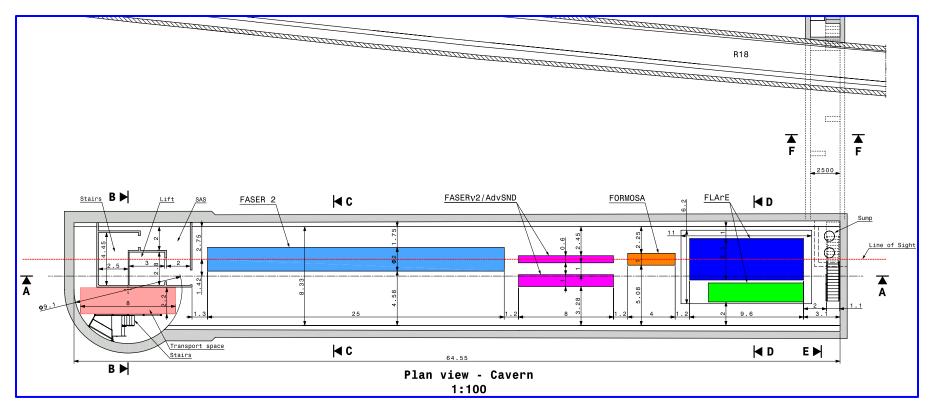

- 75 pages, but not "everything but the kitchen sink"; intended to be a distillation of key progress on the FPF so far.
- Written over the last ~2 months by ~80 coauthors, overall conveners: me, Felix, Maria.
- Will be submitted to arxiv next week, then to a journal. Current draft available on this meeting's indico page.


The Forward Physics Facility: Sites, Experiments, and Physics Potential

Luis A. Anchordoqui,^{1,*} Akitaka Ariga,^{2,3} Tomoko Ariga,⁴ Weidong Bai,⁵ Kincso Balazs,⁶ Brian Batell,⁷ Jamie Boyd,⁶ Joseph Bramante,⁸ Adrian Carmona,⁹ Mario Campanelli,¹⁰ Francesco G. Celiberto,^{11, 12, 13} Grigorios Chachamis,¹⁴ Matthew Citron,¹⁵ Giovanni De Lellis,^{16, 17} Albert de Roeck,⁶ Hans Dembinski,¹⁸ Peter B. Denton,¹⁹ Antonia Di Crecsenzo,^{16,17,6} Milind V. Diwan,²⁰ Liam Dougherty,²¹ Herbi K. Dreiner,²² Yong Du,²³ Rikard Enberg,²⁴ Yasaman Farzan,²⁵ Jonathan L. Feng,^{26,†} Max Fieg,²⁶ Patrick Foldenauer,²⁷ Saeid Foroughi-Abari,²⁸ Alexander Friedland,^{29,*} Michael Fucilla,^{30,31} Jonathan Gall,³² Maria Vittoria Garzelli,^{33,‡} Francesco Giuli,³⁴ Victor P. Goncalves,³⁵ Marco Guzzi,³⁶ Francis Halzen,³⁷ Juan Carlos Helo,^{38,39} Christopher S. Hill,⁴⁰ Ahmed Ismail,^{41,*} Ameen Ismail,⁴² Sudip Jana,⁴³ Yu Seon Jeong,⁴⁴ Krzysztof Jodłowski,⁴⁵ Fnu Karan Kumar,²⁰ Kevin J. Kelly,⁴⁶ Felix Kling,^{29,47,§} Rafał Maciuła,⁴⁸ Roshan Mammen Abraham,⁴¹ Julien Manshanden,³³ Josh McFayden,⁴⁹ Mohammed M. A. Mohammed,^{30,31} Pavel M. Nadolsky,^{50, *} Nobuchika Okada,⁵¹ John Osborne,⁶ Hidetoshi Otono,⁴ Vishvas Pandey, 52, 46, * Alessandro Papa, 30, 31 Digesh Raut, 53 Mary Hall Reno, 54, * Filippo Resnati, 6 Adam Ritz,²⁸ Juan Rojo,⁵⁵ Ina Sarcevic,^{56, *} Christiane Scherb,⁵⁷ Pedro Schwaller,⁵⁸ Holger Schulz,⁵⁹ Dipan Sengupta,⁶⁰ Torbjörn Sjöstrand,^{61,*} Tyler B. Smith,²⁶ Dennis Soldin,^{53,*} Anna Stasto,⁶² Antoni Szczurek,⁴⁸ Zahra Tabrizi,⁶³ Sebastian Trojanowski,^{64,65} Yu-Dai Tsai,^{26,46} Douglas Tuckler,⁶⁶ Martin W. Winkler,⁶⁷ Keping Xie,⁷ and Yue Zhang⁶⁶


The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acceptance of the existing large LHC experiments and will observe rare and exotic processes in an extremely low-background environment. In this work, we summarize the current status of plans for the FPF, including recent progress in civil engineering in identifying promising sites for the FPF; the FPF experiments currently envisioned to realize the FPF's physics potential; and the many Standard Model and new physics topics that will be advanced by the FPF, including searches for long-lived particles, probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle physics.

FPF SHORT PAPER: FACILITY


Vehicle ao

	CONTENTS	
	I. Introduction	5
		0
	II. The Facility and Civil Engineering A. Overview	6 7
	B. Alcoves in the UJ12 Cavern	7
	C. Purpose-Built Facility	8
	D. Civil Engineering Costs	10
	E. Services	11
	F. Sweeper Magnet	11
100	G. Conclusions	12
1		
	III. Proposed Experiments	12
	A. FASER2	13
	B. FASER $\nu 2$	15
	C. Advanced SND@LHC	16
	D. FLArE: Forward Liquid Argon Experiment	18
	E. FORMOSA: FORward MicrOcharge SeArch	20
	IV. Searches for New Physics	22
, 	A. Long-Lived Particle Decays	22
	B. Dark Matter Scattering and Production	26
	C. Millicharged Particles	28
	V. Neutrino Physics	29
	A. Neutrino Fluxes	30
	B. Neutrino Interactions and Cross Sections	32
	C. BSM Neutrino Physics: Examples	34
ice	VI. QCD	36
	A. QCD Theory for High-Energy Particle Production	39
	B. Forward Charm Production in the Hybrid Formalism	40
	C. PDFs and Forward Charm Production According to Collinear Factorization	42
	D. Neutrino-Induced Deep Inelastic Scattering	45
	E. Single Forward and Forward-Forward Events at the FPF (and ATLAS)	46
	F. Forward Physics in Event Generators	48
	VII. Astroparticle Physics	50
	A. Cosmic Ray Physics and the Muon Puzzle	51
	B. Prompt Atmospheric Neutrino Fluxes	54
	VIII. Conclusions and Outlook	55
	Acknowledgements	57
	References	58

FPF SHORT PAPER: EXPERIMENTS

- FASER2: tracker, magnetic spectrometer, LLP search
- FASERv2: ~20 tonne emulsion/tungsten detector, neutrinos, especially tau
- AdvSND: 2 ~2-10 tonne detector (AdvSND1 in FPF, AdvSND2 at η~4.5), neutrinos
- FORMOSA: scintillator detector, millicharged particles, neutrino EDMs, etc.
- FLArE: ~10 tonne LArTPC, electron and muon neutrinos, DM scattering

FPF SHORT PAPER: PHYSICS

	CONTENTS		
	I. Introduction	5	
	 II. The Facility and Civil Engineering A. Overview B. Alcoves in the UJ12 Cavern C. Purpose-Built Facility D. Civil Engineering Costs E. Services F. Sweeper Magnet G. Conclusions 	6 7 8 10 11 11 12	
Searches for New Physics	III. Proposed ExperimentsA. FASER2B. FASERν2	12 13 15	
Neutrino Physics	C. Advanced SND@LHC D. FLArE: Forward Liquid Argon Experiment E. FORMOSA: FORward MicrOcharge SeArch IV. Searches for New Physics	16 18 20 22	
	A. Long-Lived Particle Decays B. Dark Matter Scattering and Production C. Millicharged Particles	22 26 28	
QCD	 V. Neutrino Physics A. Neutrino Fluxes B. Neutrino Interactions and Cross Sections C. BSM Neutrino Physics: Examples 	29 30 32 34	
Astroparticle Physics	 VI. QCD A. QCD Theory for High-Energy Particle Production B. Forward Charm Production in the Hybrid Formalism C. PDFs and Forward Charm Production According to Collinear Factorization D. Neutrino-Induced Deep Inelastic Scattering E. Single Forward and Forward-Forward Events at the FPF (and ATLAS) F. Forward Physics in Event Generators 	$36 \\ 39 \\ 40 \\ 42 \\ 45 \\ 46 \\ 48$	
	VII. Astroparticle PhysicsA. Cosmic Ray Physics and the Muon PuzzleB. Prompt Atmospheric Neutrino Fluxes	50 51 54	
	VIII. Conclusions and Outlook	55	
	Acknowledgements	57	
	References	58	

OTHER UPDATES

- Snowmass is underway again. Upcoming FPF milestones:
 - FPF Short Paper will be on arxiv next week.
 - FPF Snowmass White Paper (~200-300 pages) will be completed by March 2022.
 - 3rd FPF Workshop (FPF3) will be 25-26 October 2021. Contributions welcome, <u>https://indico.cern.ch/event/1076733</u>.
- LHC Run 3 schedule being refined
 - 1st physics run now expected ~June 2022.
 - Run 3, currently 2022-24, may be extended through 2025, which would delay HL-LHC start to 2028. Will be discussed November 2021.
- First US federal funding for FASER/FASERv awarded: \$1.5M NSF grant for 2021-24, support from Physics Division director funds.
- Good discussions with Milind, David, Gabriella, looking forward to approaching private foundations and DOE.