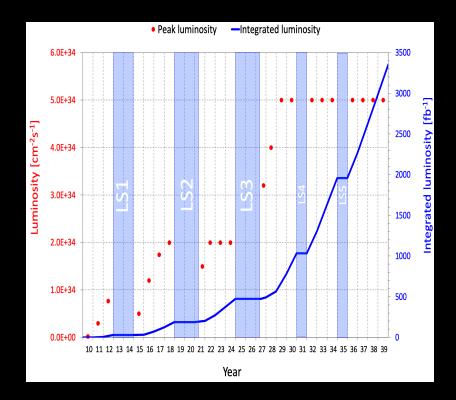
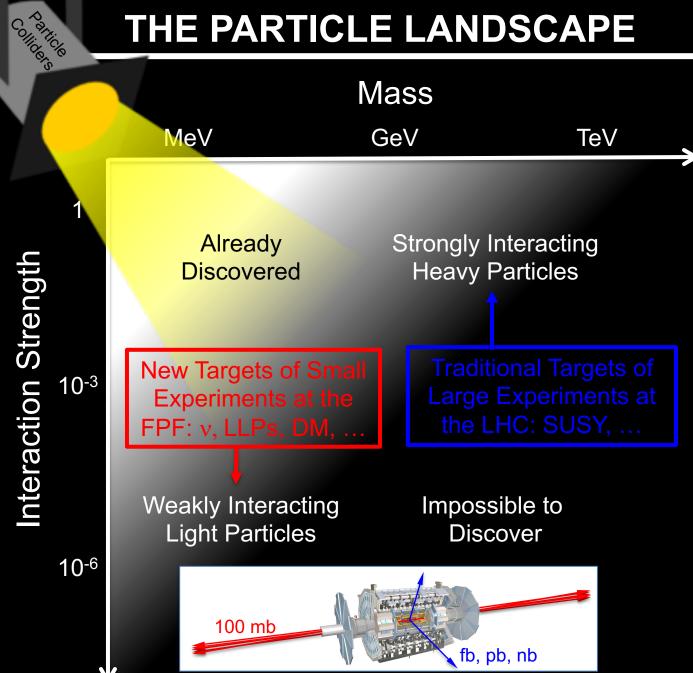
UPDATES AND THOUGHTS ON SCHEDULE FOR THE FORWARD PHYSICS FACILITY

BNL Discussion 8 July2021

Jonathan Feng, UC Irvine




FORWARD PHYSICS FACILITY

- A fact that should be better appreciated: we are in a critical period.
- In the next year or two, we will either make plans to exploit new opportunities at the HL-LHC, or lose them until 2045, 2060, 2075, ..., long after many of us are dead (either professionally or actually).

 The Forward Physics Facility is an opportunity to explore a rich BSM and SM physics program in the far forward region, extending the LHC physics potential with relatively little additional investment.

THE PARTICLE LANDSCAPE

Interaction Strength

UPDATES:

CIVIL ENGINEERING

BSM PHYSICS

SM PHYSICS

CIVIL ENGINEERING

EXISTING FAR FORWARD LHC EXPERIMENTS

ATLAS

The existing caverns UJ12 and UJ18 and adjacent tunnels are good locations for experiments along the LOS: 480 m from ATLAS and shielded from the ATLAS IP by ~100 m of rock.

SND: approved March 2021

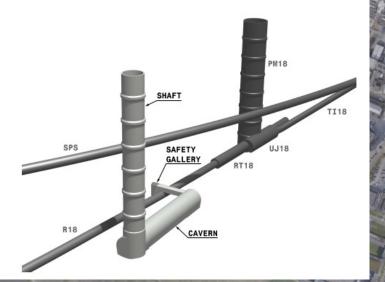
UJ18

FASER: approved March 2019 LOS FASERv: approved December 2019

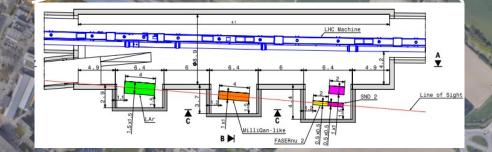
SPS

LHC

UJ12


CERN GIS

FPF LOCATION

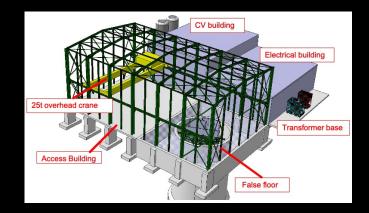

CERN GIS

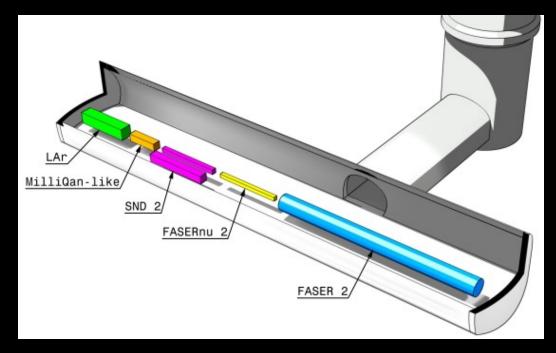
ATLAS

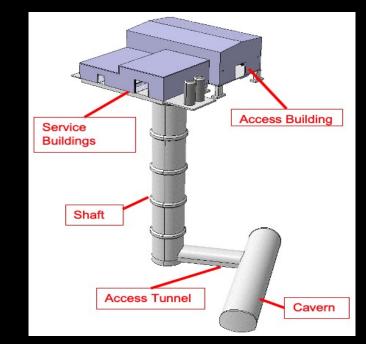
Possibilities presented by CERN CE at FPF2 Meeting:
(1) enlarge existing cavern UJ12 with alcoves for each experiment
(2) create a new shaft and cavern ~617 m from ATLAS past UJ18

UJ18

See Kincso Balazs talk, FPF2 Meeting, 27-28 May 2021

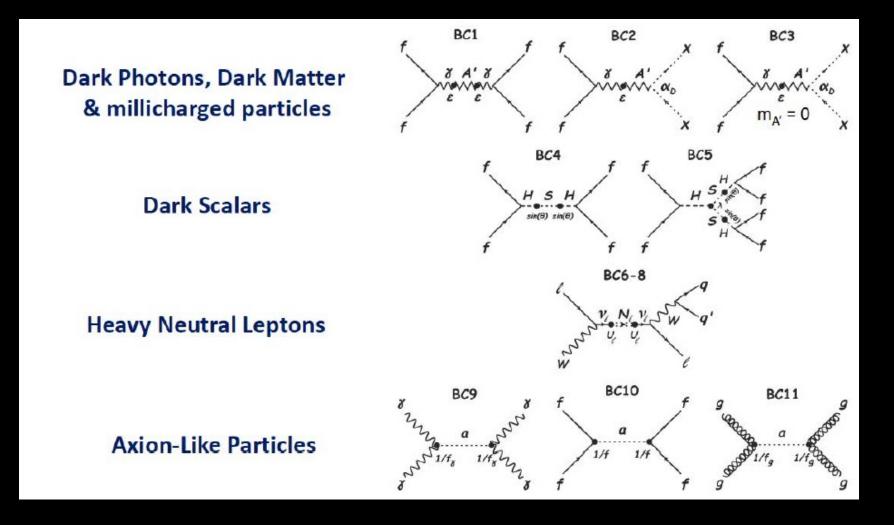

SPS


LHC


UJ12

NEW SHAFT AND CAVERN

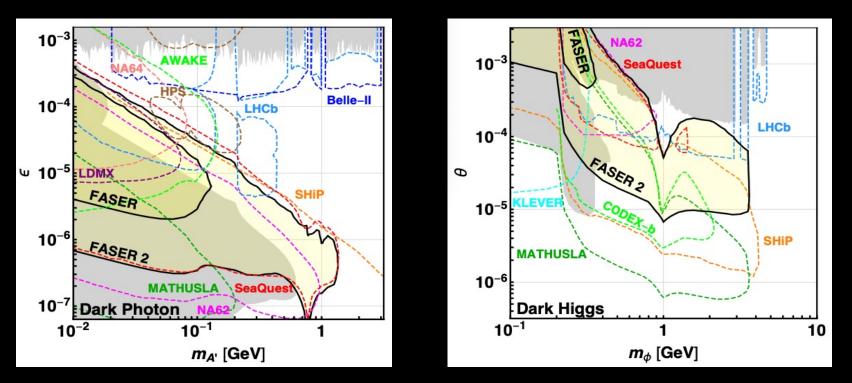
- Many advantages
 - Construction access far easier
 - Flexible size and length of cavern (> 60 m)
 - Designed around needs of the experiments
- Very preliminary (class 4) cost estimate: ~\$23 MCHF, not including services. See Balazs talk for the many significant caveats.



BSM PHYSICS

PBC BSM BENCHMARK CASES

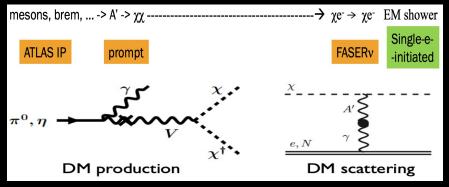
• 11 models of light, weakly-interacting particles (LLPs, FIPs)

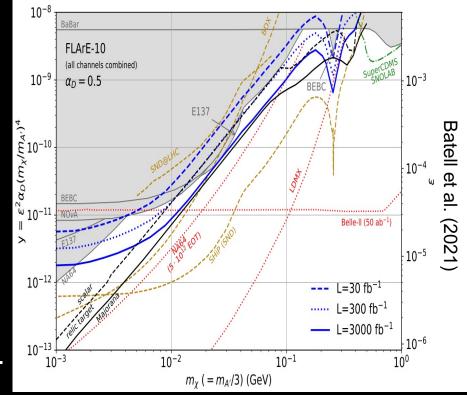

BSM SUMMARY

- FASER and FASER2 are well-known to cover many, but not all, of the benchmarks.
- Recent studies have shown that FPF experiments can discover new physics in the remaining two PBC benchmark cases (BC2 and BC3).

Benchmark Model	Underway	FPF	References	
BC1: Dark Photon	FASER	FASER 2	Feng, Galon, Kling, Trojanowski, 1708.09389	
BC1': U(1) _{B-L} Gauge Boson	FASER	FASER 2	Bauer, Foldenauer, Jaeckel, 1803.05466 FASER Collaboration, 1811.12522	
BC2: Dark Matter	-	FLArE	Batell, Feng, Trojanowski, 2101.10338 Batell, Feng, Kling, Ismail, Mammen, Trojanowski 2107.00666	
BC3: Milli-Charged Particle	-	FORMOSA	Foroughi-Bari, Kling, Tsai, 2010.07941	
BC4: Dark Higgs Boson	-	FASER 2	Feng, Galon, Kling, Trojanowski, 1710.09387 Batell, Freitas, Ismail, McKeen, 1712.10022	
BC5: Dark Higgs with hSS	-	FASER 2	Feng, Galon, Kling, Trojanowski, 1710.09387	
BC6: HNL with e	-	FASER 2	Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212	
BC7: HNL with μ	-	FASER 2	Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212	
BC8: HNL with τ	FASER	FASER 2	Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212	
BC9: ALP with photon	FASER	FASER 2	Feng, Galon, Kling, Trojanowski, 1806.02348	
BC10: ALP with fermion	FASER	FASER 2	FASER Collaboration, 1811.12522	
BC11: ALP with gluon	FASER	FASER 2	FASER Collaboration, 1811.12522	

BCs 1, 4-11: LLPS AT FASER AND FASER 2


- FASER can discover new physics in some of these models with 1 fb⁻¹.
- The Forward Physics Facility will provide space to upgrade FASER (R=10cm, L=1.5m, Run 3) → FASER 2 (R=1m, L=5m, HL-LHC), either extending sensitivity greatly (e.g., dark photon), or providing new discovery prospects (e.g., dark Higgs) complementary to other expts.

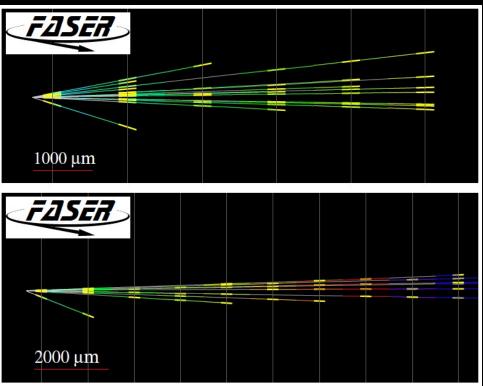

FASER Collaboration, 1811.12522 (2018)

BC3: DARK MATTER

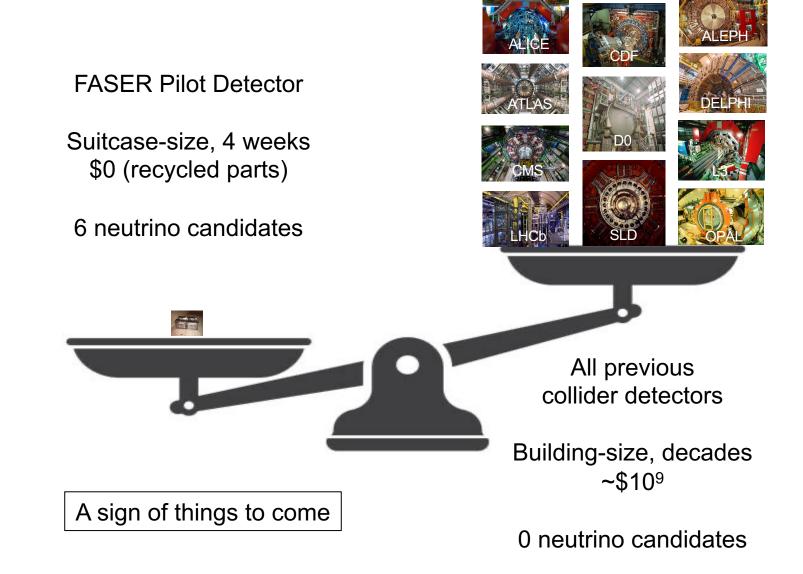
- If m_{LLP} > 2m_{DM}, the LLP will typically decay to dark matter, leading to a highly collimated beam of dark matter particles.
- Can look for the resulting DM to scatter off electrons and nuclei at FLArE, Forward Liquid Argon Experiment, a proposed 10-100 tonne LArTPC.

- FLArE probes most of parameter space that is not excluded by DM overclosing the universe.
- Direct detection, not missing energy.

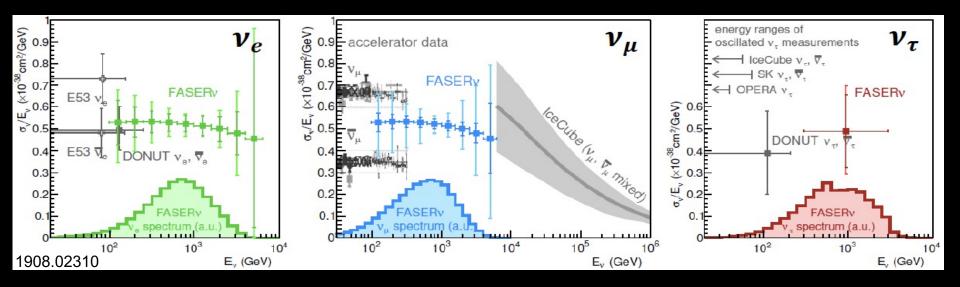
SM PHYSICS


FIRST COLLIDER NEUTRINOS

 No collider neutrino was previously detected, but there is a huge flux of TeV neutrinos in the far forward direction


De Rujula, Ruckl (1984); Winter (1990)

- In 2018 a 29 kg FASER pilot emulsion detector collected 12.2 fb⁻¹ on the beam collision axis (installed and removed during Technical Stops).
- Based on 11 kg fidiucial mass, expect ~3.3 v interactions. In May 2021, announced the first direct detection of 6 collider neutrino candidates above 12 expected neutral hadron backgrounds (2.7σ).



LOCATION, LOCATION, LOCATION

NEUTRINO PHYSICS

- Run 3: FASERv (on-axis) and SND (off-axis), ~1-tonne emulsion/ tungsten detectors, will open the new field of LHC neutrino physics
 - ~1000 ν_{e} , ~10,000 ν_{μ} , and ~10 ν_{τ} interactions at TeV energies
 - First direct exploration of this energy range for all 3 flavors

- HL-LHC: FPF will accommodate FASERv2 / SND2 (~10-tonne emulsion detectors), FLArE (10+ tonne LArTPC)
 - ~100,000 ν_{e} , ~1,000,000 ν_{μ} , and ~1000 ν_{τ} interactions at TeV energies

THOUGHTS ON SCHEDULE

EXAMPLE SCHEDULE

- Not even "very preliminary" !
- Assumes new cavern option for the FPF.

Shutdown / YETS Proton physics Ion physics Commissioning with beam Hardware commissioning / magnet training

	2021	2022	2023	2024
	JFMAMJ JASOND JFM/	AMJJASON	DJFMAMJJASOND	JFMAMJ JASC
LHC	Long Shutdown 2	Run 3		
Snowmass/	Snowmass	F	P5	
P5/LHCC	SP White Pap	LHCC LOI	LHCC TDR	
Expts	Expt Design		R&D	
		CDRs	TDRs	
FPF				

- Starting when the HL-LHC starts is necessary to maximize physics. A long way to go, but experiment design in coming year is a crucial step.
- Would welcome lab help for designing FLArE, DOE reviews, etc.