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Why? Nuclear Science motivation

Model uncertainty limits our predictions in key problems:

* Neutrinoless double beta decay

* r-process: extrapolation to the dripline and beyond - other nuclear-
structure issues

* Heavy-ion collisions: energy deposition; pre-hydrodynamic stage;
conversion of hydrodynamic output to final-state particles

* Different approaches to reaction dynamics - nuclear data

* Experimental planning

Goal: to build a framework that is generally useful for full UQ in
nuclear physics (including model) and provide examples of its use



Goal: Facilitate principled Uncertainty Quantification in Nuclear Physics

BAND Framework
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Case Study Database BANDs

An NSF CSSI Framework
(5 years from 7/2020)
Look to
https://bandframework.
github.io/ for papers,
talks, and software!
v0.3 coming soon!
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Guide to the BAND Cyberinfrastructure Framework
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uncertainties in nuclear dynamics
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High-fidelity models may be too expensive = use an emulator instead!

BAND (Bayesian Analysis of Nuclear Dynamics)
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BAND (Bayesian Analysis of Nuclear Dynamics)

Calibrating a model means to update distributions of its parameters based on data.
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Future: full Bayesian
parameter estimation and
uncertainty propagation
(see ISNET talks)

Tuesday: Dan Liyanage,
Bayesian calibration of
viscous anisotropic
hydrodynamic
simulations of heavy-ion
collisions




BAND (Bayesian Analysis of Nuclear Dynamics)

Multiple models predict an observable: how to combine for the best prediction?
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Future: Applications using
BAND Taweret software

Example applications:

 Relativistic heavy-ion
dynamics;

* Nuclear equation-of-state
(EOS): e.g., ¥EFT and pQCD;

» Effective field theories (EFT):
e.g., pionless and chiral EFT,
different scales/schemes.




BAND (Bayesian Analysis of Nuclear Dynamics)

Experimental design requires uncertainties from both experiment and models
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Basic ideas of experimental design

* Goals of experiment encoded in a utility function and averaged [

pr(C, Q| yexp, I) |7
over potential experimental results from each particular design | prior 1|
* Design might be beam energies and detector positions - [ Posterior
3_
* Maximize expectation of utility function over designs ° 1
oL
* Possible goals: :
* Accurate observation of some quantity i
* Discriminate between competing models o oé; !
* Precisely constrain parameters of the theory (here a) What designs shrink

the prior most?

Utility of design: information gain averaged over parameters and measurements

() = | {m[prfr'(g d)] pr(aly, d)da}prw d)dy (cf. entropy)

Here: gain in Shannon information from prior to posterior



Goal: maximize benefits — minimize cost (time, money, workforce)

Example: Design of future yp Compton scattering experiments

What experimental (w, 8) are most useful for constraining polarizabilities and testing theory?

Given: (1) Present polarizability error bars; (2) experimental constraints; (3) XEFT accuracy decreases as w.

Nucleon polarizabilities from
Compton scattering with YEFT
Griesshammer, McGovern, Phillips, EPJA (2018)

Experiments: HlyS; A2@MAMI
-> tension with YEFT valid range

What does a Bayesian analysis of experimental design look like?
[J. Melendez et al, Eur. Phys. J. A57, 3 (2021)]



https://link.springer.com/article/10.1140/epja/s10050-021-00382-2

Example: Design of future yp Compton scattering experiments
What experimental (w, 8) are most useful for constraining polarizabilities and testing theory?

Given: (1) Present polarizability error bars; (2) experimental constraints; (3) xEFT accuracy decreases as w1 .
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Example: Design of future yp Compton scattering experiments
What experimental (w, 8) are most useful for constraining polarizabilities and testing theory?

Given: (1) Present polarizability error bars; (2) experimental constraints; (3) xEFT accuracy decreases as w1 .

All arp1 + By ae1 — B {vi} Ukl
J. Melendez et al. (2”)2][ 0.36
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Compare utility without-to-with model discrepancy dy,, = very different implications!



Outcome: Physics discovery through statistics!

BAND (Bayesian Analysis of Nuclear Dynamics)
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An NSF CSSI Framework
(5 years from 7/2020)
Look to
https://bandframework.
github.io/ for papers,
talks, and software!
v0.3 coming soon!
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Github repo for BAND Framework

bandframework / software | (0 https://github.com/bandframework/bandframework

e wildsm Update README.md 1ac26b7 - 8 months ago @ History

Name Last commit message Last commit date CO m I n g S O O n : VO O 3 !
BRICK Delete .DS_Store 8 months ago ° ROS E
Bfrescox Update README.md 8 months ago L Ta we ret
QGP_Bayes @ 4b3e236 updated the sdk policy for QGP_Bayes 8 months ago ° p a r M O O
SAMBA @ 0479b4d updating the submodule SAMBA 8 months ago

* BMEX

surmise @ 9878d3b updating surmise reference point 2 years ago

Current BAND Framework is v0.2

Tools:
e surmise: for model emulation via Gaussian Processes and calibration
e SaMBA: Sandbox for Mixing via Bayesian Analysis

Examples:

* QGP_Bayes: tutorial on Bayesian analysis of QGP simulations

* BRICK: Bayesian R-matrix Inference Code Kit

* BFRESCOX: Emulation and Bayesian model calibration of coupled-channels treatment of nuclear reactions


https://github.com/bandframework/bandframework

When? BAND timeline

July 2020: beginning of grant from NSF OAC
December 2020: virtual BAND camp
December 2021: hybrid BAND camp
Summer 2022: Release of v0.2

May 2023: in-person (!) BAND camp

Summer 2023: Release of v0.3, including additional model-mixing
methods, emulators (ROSE), and additional physics examples, e.g., BMEX

Summer 2024: Release of v0.4, including experimental-design capability
and additional physics examples

Summer 2025: Release of v1.0: full functionality



Thank you!
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Coming attraction:

2023: FRIB-TA Summer School on Practical Uncertainty Quantification
and Emulator Development in Nuclear Physics, June 26-28, at FRIB.

Jupyter book (text plus notebooks) for physics applications:
Learning from Data (OSU course Physics 8820)



https://indico.frib.msu.edu/event/65/
https://indico.frib.msu.edu/event/65/
https://furnstahl.github.io/Physics-8820/about.html

Extra slides



BI I EX Godbey, Buskirk, Giuliani, Jain, Kejzlar, Nazarewicz, ....

Updates popular “Mass Explorer”

Masses from EDFs augmented with discrepancy function from a
GP
M(N,Z) = Mgpg j + 6N, Z; ¢, 67)

GP then calibrated to mass data Tin isotopes

https://bmex.dev

Ultimately want to mix different
EDFs to get unified prediction, a
la recent use of BMA to get best 5
prediction for mass of 80Zr NSutes
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A. Hamaker, R. Jain, S. A. Giuliani, W. Nazarewicz, L. Neufcourt, et al., Nature Physics (2021)



BRICK &

Bayesmn. R-matrix Inference Do —
Code Kit

emcee* l AZURE2

Main piece is a mediator -
between AZURE2 and a ' - -
sampler (emcee for now) 2 A - / - ]

Y,

https://github.com/odell/brick

=
. . > 40
Constrain R-matrix &
parameters from data using = 201
o L
emcee, then propagate z |
samples to extrapolate Y050 055 0.60
E (MeV, c.m.) 5(0) (keV'b)

Odell, deBoer, Paneru, Brune, Phillips, Frontiers in Physics (2022)



BFRESCOX
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Viscous Anisotropic Hydrodynamics:
Parameter Estimation and Model Mixing

Relativistic HIC simulated using
a multi-stage model; each model
calibrated separately

Replace “Free Stream” &
“MUSIC” by Viscous Anisotropic
Hydrodynamics

New models to be emulated
then calibrated using RHIC &
LHC data

Preliminary emulators here

Model mixing of particlization
and perhaps hydro approach

Liyanage, Heinz, Plumlee, Surer, Wild

final detected
particle_distributions

Relativistic Heavy-Ion Collisions
made by Chun Shen
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