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Nuclear fission is a key ingredient in a vast 
range of applications.

The Times
Bloomberg

Scientific American

Forbes
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We aim at describing the various steps of 
nuclear fission.
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We use a fully microscopic approach to describe 
nuclei: the nuclear Density Functional Theory.

Minimization of the energy 

for each shape.

× 5,000 shapes (2D)

× 100,000 shapes (3D)

2D: Potential Energy Surface (PES)

ND: Potential Energy Landscape
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We use a fully microscopic approach to describe 
nuclei: the nuclear Density Functional Theory.

Minimization of the energy 

for each shape.

× 5,000 shapes (2D)

× 100,000 shapes (3D)

× 3,000 atomic nuclei 

of interest.
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Fission calculations with nuclear DFT across 
all known nuclei remain out of reach.

Minimization of the energy 

for each shape.

× 5,000 shapes (2D)

× 100,000 shapes (3D)

× 3,000 atomic nuclei 

of interest.One shape

1 cpu.h

One surface

5 k cpu.h (2D)

100 k cpu.h (3D)

Full calculation

2,000 cpu.year (2D)

35,000 cpu.year (3D)
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(1) Minimizing the energy leads to spurious 
connections between different channels.
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(2) The choice of constrained degrees of 
freedom is somewhat arbitrary.
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(2) The choice of constrained degrees of 
freedom is somewhat arbitrary.
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(2) The choice of constrained degrees of 
freedom is somewhat arbitrary.
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(2) The choice of constrained degrees of 
freedom is somewhat arbitrary.
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(3) Another choice of constrained degrees of 
freedom can remove the discontinuities. 
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Nuclear DFT still is a great theoretical 
contender for the description of fission.

• It is predictive almost everywhere across the nuclear chart, 

far from known nuclei. 

• It is microscopic, and thus enables to connect the latest 

developments in nuclear interaction with the description of 

heavy nuclei.

• It is a very flexible framework that enables physicists to 

study a wide range of phenomena.

Can we find a computationally efficient surrogate model of 

nuclear DFT that preserves its most important features?

➔We are exploring the use of machine learning to learn 

an efficient representation of DFT degrees of freedom.
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We use autoencoder neural networks to 
build our surrogate model of nuclear DFT.

Required properties for the surrogate model:

1. It has to be computationally efficient.

We want, eventually, to tackle astrophysics simulations.

Nuclear DFT states are described by millions of parameters, we want to 

be scalable.

2. It has to predict simply connected (“continuous”) manifolds.

No missing saddle = no missing physics.

3. We can choose its dimension D.

We want D=1 (potential energy line) or D=2 (potential energy surface).

4. It has to reproduce states far from discontinuities.

The surrogate model has to reproduce the model where it works well.
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(Feedforward) neural networks are the 
sequential application of neural layers.

Cute

Not cute
⋯
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In our case, neural layers are the composition of 
a linear map and a nonlinear activation function.

𝑦1
⋮
𝑦𝑚

= 𝑎

𝑤11 ⋯ 𝑤1𝑛
⋮ ⋱ ⋮

𝑤𝑚1 ⋯ 𝑤𝑚𝑛

×

𝑥1
⋮
𝑥𝑛

+
𝑏1
⋮
𝑏𝑚

Cute

Not cute
⋯
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The choice of activation function determines 
the smoothness of the neural network.

𝑦1
⋮
𝑦𝑚

= 𝑎

𝑤11 ⋯ 𝑤1𝑛
⋮ ⋱ ⋮

𝑤𝑚1 ⋯ 𝑤𝑚𝑛

×

𝑥1
⋮
𝑥𝑛

+
𝑏1
⋮
𝑏𝑚

Cute

Not cute
⋯

• Sign function: discontinuous.

• ReLU: continuous.

• SoftPlus, Tanh: differentiable.

𝑥

𝑎(𝑥)

𝑥

𝑎(𝑥)

𝑥

𝑎(𝑥)

Sign ReLU SoftPlus
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Autoencoders are analogous to zip/unzip.

Encoder

(zip)
Decoder

(unzip)

Code ∈ Latent space

(compressed file)

Output

(uncompressed

file)

Input

(original file)

⋯ ⋯
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Autoencoders are analogous to zip/unzip.

Encoder

(zip)
Decoder

(unzip)

Code ∈ Latent space

(compressed file)

Output

(uncompressed

file)

Input

(original file)
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The latent space contains the new DoFs, and the 
decoder is a continuous surrogate model.

Decoder

(unzip)

Code ∈ Latent space

(compressed file)

Output

(uncompressed

file)

New degrees 

of freedom
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We have tackled the question in two 
different ways.

I. We have fitted a continuous variational autoencoder on 

the orbitals of a 2-D Potential Energy Surface with pairing,

a.k.a, Hartree-Fock-Bogoliubov (HFB) states.

II. We have fitted a continuous variational autoencoder on 

a 1-D Potential Energy Landscape without pairing,

a.k.a., Hartree-Fock (HF) states.
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I. We aim at compressing nuclear DFT states 
with pairing (HFB states) in a 2-D PES.

New degree 

of freedom

Continuous decoder
𝜆0

|HFB⟩
𝜆1
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I. We use the Bloch-Messiah decomposition 
of HFB states (with pairing).

HFB ∝ෑ

𝑖>0

𝑢𝑖 + 𝑣𝑖 Ƹ𝑐𝑖
† Ƹ𝑐 ҧ𝑖

† − , 𝑢𝑖
2 + 𝑣𝑖

2 = 1.
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I. We can give the autoencoder a block 
structure and train each block separately.

Ƹ𝑐0
†

𝑣 2

Ƹ𝑐𝑁−1
†

Ƹ𝑐0
′†

𝑣′ 2

Ƹ𝑐𝑁−1
′†

𝜆0

𝜆1

⋯ ⋯

New degree 

of freedom
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I. We trained the orbital block on all the 
orbitals of all the HFB states in the PES.

𝑥0
𝑥1⋯

𝑥𝐷−1

Rough estimation of the optimal code size 𝑑:

𝑞20, 𝑞30, 𝜀, Ω, 𝜏, unknown others: 𝐷 ≥ 5
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I. Quality testing: we replace the orbitals with the 
decoded ones and recompute the energy.
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I. Quality testing: we replace the orbitals with the 
decoded ones and recompute the energy.
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I. We compressed the orbitals for 98Zr using 
a latent space 𝑫 = 𝟐𝟎.

Verriere M, Schunck N, Kim I, Marević P, Quinlan K, Ngo MN, Regnier D and Lasseri R.D., Front. Phys. 10:1028370.
doi: 10.3389/fphy.2022.1028370
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I. The error on the HFB energy is always 
below 1 MeV, and mostly below 0.2 MeV.

Verriere M, Schunck N, Kim I, Marević P, Quinlan K, Ngo MN, Regnier D and Lasseri R.D., Front. Phys. 10:1028370.
doi: 10.3389/fphy.2022.1028370
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I. We did the same work with 𝑫 = 𝟏𝟎, and we 
obtained a very similar error distribution.

Verriere M, Schunck N, Kim I, Marević P, Quinlan K, Ngo MN, Regnier D and Lasseri R.D., Front. Phys. 10:1028370.
doi: 10.3389/fphy.2022.1028370
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II. We aim at compressing nuclear DFT states 
without pairing (HF states) in a 1-D PEL.

New degree 

of freedom

Continuous decoder𝜆 |HF⟩
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II. The Thouless theorem gives a one-to-one 
mapping between HF states and matrices.

1. We can decompose all the HF states HF as

HF ∝ exp ෍

𝑝<𝐴, ℎ<𝑁b

𝑍𝑝ℎ ො𝑎ℎ
† ො𝑎𝑝 Φ0 .

2. We need to find a |Φ0⟩ not orthogonal to any of the HF states. 

We use the Karcher mean of the training set.

3. Now, not only 𝑍 entirely represents the state HF , but there is 

also a one-to-one correspondence between the 𝐴 × 𝑁b
matrices and the HF states not orthogonal to Φ0 .
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II. We consider a variational autoencoder 
with a 1-D latent space for the isotope 16O.

4. We compute the 16 × 300 matrices 𝑍 = 𝑍(𝑞) for each 

precomputed HF state |HF 𝑞 ⟩.

5. We randomly split all the 𝑍(𝑞) into:

training set: 70%    validation set: 20%    testing set: 10%

6. We use this architecture:

𝑍(𝑞) PCA PCA-1 𝑍′(𝑞)
Neural 

network

Neural 

network
λ𝒩( ҧ𝜆, 𝜎)

Sampling

Dim.

4,800

Dim.

17

Dim.

1

Dim.

17

Dim.

4,800
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II. We applied this approach on a set of HF states 
with one constrained DoF for the nucleus 16O.
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II. We are able to find a physically relevant 
continuous degree of freedom in 1D.

R.D. Lasseri, D. Regnier, M. Frosini, M. Verriere, N. Schunck, A. Penon, to be published (2023)
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We have built the first surrogate models of 
nuclear DFT with deep neural networks.

1. We gained a lot of insight on the structure of nuclear DFT 

states, with and without pairing, and how to build, train and 

use (variational) autoencoders.

2. We obtain qualitatively good results in the compression of 

orbitals, but going further seems challenging:
• we need to follow the orbitals, but we want to only explicitly compute 

a few nuclear DFT states,

• conical intersections might impose to use more dimensions than 

physical DoFs.

3. We are now exploring the use of deep neural networks for 

the fields and densities of nuclear DFT with pairing 

included…
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… and we are able to compress HFB states 
with great accuracy.

Mean absolute error for each normalized fields 

in the 98Zr potential energy surface.
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