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AI/ML for accelerators
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Accelerator 
Design

Construction

Commissioning

Operation Maintenance

GP+BO

RL

xNN

AI/ML can find hidden data structures 

and build surrogate models for:

• Machine tuning 

• Anomaly Detection

• Tomography

• Model predictive control
Auto-

Encoder



Heavy-ion Accelerators
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FRIB

Goal of NP Heavy-ion Accelerator

• High power primary beam (FRIB, ATLAS)

• High Luminosity (RHIC)

• Various ion species (ALL)

• high availability/Reliability (ALL)



▪A brief survey of the AI/ML applications in heavy ion accelerator

• AI/ML based Machine tuning in FRIB, ATLAS and RHIC
»Various of Bayesian Optimization applications

• Retrieving beam profiles with AI/ML method
»Connecting with beam loss

»Towards Tomography of phase space

▪Summary

Outline
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Machine Tuning



▪ (model independent) Reinforcement Learning (RL) vs Gaussian Process +  Bayesian Optimization (BO)
• RL can adapt to time variation (e.g. drift), and scales well to large data but sample inefficient.

• BO with Gaussian Process is very sample efficient but is for static problem and scales terribly to large data

AI/ML Methods for Machine Tuning
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GP surrogate model

Acquisition function

Agent Accelerator

Actions

States+Rewards

@ Brochu et al, 2010



▪Goals
• Minimization 3D beam centroid deviations at 3 MEBT BPMs

• Maximize beam current ratio 
𝐼afterRFQ

𝐼beforeRFQ
at two BCMs 

• Maximize beam current at two BCMs and 3 BPMs

▪ 6 Decision Knobs: 
• electric currents for magnetic correctors

▪Goal Budget: <10 min

▪Cost
• 2 sec for BPM reading

• 1𝐴/sec (max ±5𝐴) for electric current ramping of correctors 

• Additional 15 sec for the electric current polarity change

FRIB Beam Tuning: Problem
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▪ Asynchronous evaluation

• Evaluate objective of a candidate solution on machine while computing BO step (model training and 

candidate query with penalization on currently evaluating candidate)

▪ Penalize and favor

• On the currently evaluating candidate one need to penalize for asynchronous BO while at the same need to 

favor to reduce ramping time.

» need careful choice of length scale and weight for the penalize / favor

• Favor current polarity

FRIB Beam Tuning: Strategy

𝑓𝑝𝑒𝑛𝑎𝑙 = −𝐶𝑝𝑒𝑛𝑎𝑙𝑒
− 𝑥−𝑥𝑝𝑒𝑛𝑎𝑙

2
/𝐿𝑝𝑒𝑛𝑎𝑙

2

𝑓𝑓𝑎𝑣𝑜𝑟 = +𝐶𝑓𝑎𝑣𝑜𝑟𝑒
− 𝑥−𝑥𝑓𝑎𝑣𝑜𝑟

2
/𝐿𝑓𝑎𝑣𝑜𝑟

2

𝑓𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 = ቊ
+𝐶𝑝𝑜𝑙𝑎𝑖𝑡𝑦 if 𝑠𝑖𝑔𝑛 𝑥 = 𝑠𝑖𝑔𝑛(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

0 else

▪ Minimize ramping path of initial 

training samples

example shows 16 initial 

samples in 2D decision 

parameter domain. @ K. Hwang
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FRIB Beam Tuning: Results

Optimization time: 

about 10min

GP mean visualized by 

projecting maximum 

across projection axes
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@ K. Hwang
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ATLAS Tuning: Optimize Beam Transmission
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▪Digitize the Legacy System
• New Python API for machine tuning

• Offline modeling: Track code

@ B. Mustapha



ATLAS Tuning: Multi-Object BO
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Use Bayesian Optimization for dual objections 

Optimizing transmission

Optimizing Profile, symmetric

Pareto front of 

two objects.

@ B. Mustapha



ATLAS Tuning: Transfer learning
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Establish model using 16O then use on 22Ne, with scaling

Transfer simulation knowledge using Deep Kernel Learning  

@ B. Mustapha



AI/ML application in Cooling Exp at RHIC
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RHIC: BO to optimize cooling rate
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• Only the first 4 BPMs are considered;

• Cooling performance is measured by the cooling rate;

• Decreasing speed of transverse ion beam size:

λ = Τ(1/δ)(𝑑δ 𝑑𝑡)
• A more negative λ means a faster cooling rate;

• Ions are assumed in the center position (x=0, y=0).

correctors

BPMs

@ Y. Gao and  W. Lin



▪ 4 BPMs are used to optimize the cooling rate.  Cooling rate is observed to be optimized with 
zero BPM offsets. 

RHIC: BO to optimize cooling rate

ISNET-9, Washington University in St. Louis, Slide 15

@ Y. Gao and  W. Lin



RHIC: Physics informed and Contextual GP 
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Physics-Informed GP

Replace the kernel (RBF) with the Hessian from 

the simulation data near the optimum point

Contextual GP

Handel the environmental change, such as the intensity 

change during one ‘store’, using Contextual-UCB

@ Y. Gao and  W. Lin
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Beam Loss,

Beam Profile, and 

Tomography



Beam distribution in NP accelerators
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▪ Unlike light sources, for NP accelerators, the knowledge of beam distribution (other than the 2nd order 
moments) are used to provide better beam matching and minimize the uncontrolled losses.

▪ Beam distribution inferred from a series of 2-D profiles in latent space.

▪ Associate latent space with beam loss.

▪ No accelerator physics is used.

~1% accuracy achieved in this simulation demonstration, with aggressive data needs



Tomography
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Ground 
Truth

Reconstruction
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Tomography at FRIB - Simulation

Fox,

https://www.fox47news.com/neighborhoods/msu-campus/after-13-years-and-

close-to-1-billion-msus-facility-for-rare-isotope-beams-is-up-and-running

● Linear accelerator

● Rare isotope production 

with primary beams up to 

400 kW, 200 MeV/u 

uranium

● Understanding the beam 

will help control beam loss 

at high intensity

Knobs: Electric 

Quadrupole, Solenoids

Diagnostics: Wire 

Scanners (1D), 

Viewers (2D)



Maximum Entropy (MENT) method
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The entropy of a beam distribution:

Constrains are the profile measurement (projections) down 

stream, denoted p(s).  Using Lagrange multiplier:
Distributions:

Measurements

Projections

It can be solved, albeit with computational difficulties 



MENT example for 4-D Distribution
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Reconstruct - 45 1D samples

Ground Truth

Conditions for 

“trick 2” to 

work?

Change in reference frame [6] T. 

Federico
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ML based MENT

GT NN

Recent paper has demonstrated that MENT is ML friendly:
@ R. Roussel, et.al. PRL 130 145001, 2023

• ML approach bypasses the challenging iteration process.

• Predict the core of the beam well.

➢ Is finite number of measurement good enough for the beam tail ‘s information? 



▪Machine Learning techniques are powerful tools to boost accelerator performance. 

▪Currently the demonstrated ML application is limited to 10 knob/feature, order of magnitudes 
less than number of control knobs in accelerator complex (~10K knobs)

▪Problem Isolation and dimension reduction are the key.

▪Beam matching and loss/background control is a challenging topic for NP accelerators.

▪ The link of beam distribution and losses is a challenging problem even for ML methods.

▪A combination of data-driven and physics-based approach seems the promising way to 
proceed.

Summary
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▪ The materials are provided by colleagues working on ATLAS, RHIC and FRIB
• Brahim Mustapha, Jose Martinez (ATLAS, ANL)

• Yuan Gao, Kevin Brown (RHIC, BNL); Weijian (Lucy) Lin, Georg Hoffstaetter (Cornell U)

• Kilean Hwang, Anthony Tran (FRIB, MSU)
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Thank you. 
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