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AIl/ML for accelerators

Accelerator
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Machine Learning Applications for Particle Accelerators

Hosted by Brookhaven National Laboratory
November 1-4, 2022

4

Commissioning

Al/ML can find hidden data structures
and build surrogate models for:

« Machine tuning

« Anomaly Detection

« Tomography

« Model predictive control
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Heavy-ion Accelerators
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Goal of NP Heavy-ion Accelerator

« High power primary beam (FRIB, ATLAS)
* High Luminosity (RHIC)

« Various ion species (ALL)

 high availability/Reliability (ALL)
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Outline

= A brief survey of the AI/ML applications in heavy ion accelerator

* Al/ML based Machine tuning in FRIB, ATLAS and RHIC
» Various of Bayesian Optimization applications

* Retrieving beam profiles with Al/ML method
» Connecting with beam loss
» Towards Tomography of phase space

= Summary
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Machine Tuning
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Al/ML Methods for Machine Tuning

* (model independent) Reinforcement Learning (RL) vs Gaussian Process + Bayesian Optimization (BO)
» RL can adapt to time variation (e.g. drift), and scales well to large data but sample inefficient.

" [

Accelerator ]

« BO with Gaussian Process is very sample efficient but is for static problem and scales terribly to large data

p(f1%.D.0) = N(f | p(x), 0*(x) | B <

-
....... .-@’—— objective fn (f())

¥ acquisition max

u(x| D, 0) = mx) + k(x, X)K~H(f — m)
c’(x| D, 0) = k(x,x) — k(x, X) "K~1k(X, %)

| GP surrogate model l
Acquisition function
P(M|H)P(H)
P(M)

acquisition function (u(-))

t=3

p(xy ) —a(x;)

P(H|M) = ~ P(M|H)P(H)

Xl x2 X3 / posterior mean (u(-))
@ Brochu et al, 2010
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FRIB Beam Tuning: Problem

= Goals
* Minimization 3D beam centroid deviations at 3 MEBT BPMs

.. . 1
« Maximize beam current ratio —2™REQ_ ot two BCMs
IbeforeRFQ

 Maximize beam current at two BCMs and 3 BPMs

* 6 Decision Knobs:
» electric currents for magnetic correctors

/4 '—,‘ _:

» Goal Budget: <10 min

= Cost
« 2 sec for BPM reading

* 14 /sec (max £5A) for electric current ramping of correctors
 Additional 15 sec for the electric current polarity change
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FRIB Beam Tuning: Strategy

= Asynchronous evaluation

» Evaluate objective of a candidate solution on machine while computing BO step (model training and
candidate query with penalization on currently evaluating candidate)

= Penalize and favor
» On the currently evaluating candidate one need to penalize for asynchronous BO while at the same need to
favor to reduce ramping time.
» need careful choice of length scale and weight for the penalize / favor

« Favor current polarity ,
2
- (x_xpenal) /Lpenal

= Minimize ramping path of initial frenat = —Cpenar® )
Tall ‘v : _ —(x—x L2
training samples '] = ) fravor = +Cravore (x~xfavor)” /Lt avor
;: 4 -i ) Foolarity = +Cpolaity if Si«gn(x) = Sign(Xcyrrent)
A IS S P Y 0 else
-05 4 - .- .
-10 1 E - .
15 o : example shows 16 initial
20 , i , 4 samples in 2D decision
2 0 1 2 parameter domain. @ K. Hwang
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FRIB Beam Tuning: Results

Final epoch
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ATLAS Tuning: Optimize Beam Transmission

= Digitize the Legacy System
* New Python API for machine tuning
 Offline modeling: Track code

oo
ZIEIY GET: get all the data from the machine
I,

¥ ——
POST: set new settings to the machine

SERVER

Data collected Pil TWO BEAMLINE

i(H

!GI !w Cll‘

a K I

Elements:
read/set

9]

QrP204

digitized,
read

FC: digitized. insert, read

@ B. Mustapha
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New vs. Old Settings
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ATLAS Tuning: Multi-Object BO

Use Bayesian Optimization for dual objections

Straight
Beamline

Low—energy heavy-/on beams ~ 1 MeV/u can
effectively emulate material damage in nuclear
reactors, in both fuel and structural materials.

Optimizing transmission

Transmission
g
L
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! ]
9
Current (A)
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40
# of Iteration

@ B. Mustapha

Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
Michigan State University

Optimizing Profile, symmetric

Beam Symmetry (RMS width difference)
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ATLAS Tuning: Transfer learning

New Material Irradiation Station at ATLAS

Triplet

effectively emulate material damage in nuclear
reactors, in both fuel and structural materials.
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Transfer simulation knowledge using Deep Kernel Learning
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AlI/ML application in Cooling Exp at RHIC
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RHIC: BO to optimize cooling rate

correctors

TR jl _1 1 1 _f,l

& - =Ty R
= — T~ o

2 - 2, - i

O

BPMs

* Only the first 4 BPMs are considered,;
« Cooling performance is measured by the cooling rate;

« Decreasing speed of transverse ion beam size: Y,
A=(1/8)(ds/dt) ? [ /L
- A more negative A means a faster cooling rate; x O \y - ¥
 lons are assumed in the center position (x=0, y=0). \ /o _
BPM 1.8 ions at the center

- — = electrons
@Y. Gaoand W. Lin
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RHIC: BO to optimize cooling rate

= 4 BPMs are used to optimize the cooling rate. Cooling rate is observed to be optimized with
zero BPM offsets.

Electron positions

radius=15 @ bpml -® bpm2 @ bpm3 -@ bpm4 .
£
g 0
0 : o
5 -1000
s :
2 £ -2000
©
L
8 30001 |{*
—0.0010
0 10 20 30 40 50 60 21:00:00 21:05:00 21:10:00 21:15:00 21:20:00 21:25:00 21:30:00
Sample number -

yol-cool.bh2.e:avgPositionM
yol-cool.bh4.e:avgPositionM

yol-cool.bhl.e:avgPositionM
yol-cool.bh3.e:avgPositionM

@Y. Gaoand W. Lin
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RHIC: Physics informed and Contextual GP

Replace the kernel (RBF) with the Hessian from Handel the environmental change, such as the intensity
the simulation data near the optimum point change during one ‘store’, using Contextual-UCB

-@®- bpml @ bpm3 @ bpm4 -@®- bpml @ bpm3 @ context

data-informed -®- bpm2 physics-informed without CGP -®- bpm2 @ bpm4 with CGP
0.0
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I 1
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W NP O RF N W
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0.0010 - with CGP 1 std
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2 3 0.0000
- DI1std
S ~0.0005
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@Y. Gaoand W. Lin
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Beam Loss,

Beam Profile, and
Tomography
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Beam distribution in NP accelerators

= Unlike light sources, for NP accelerators, the knowledge of beam distribution (other than the 2"d order
moments) are used to provide better beam matching and minimize the uncontrolled losses.

= Beam distribution inferred from a series of 2-D profiles in latent space.

LOSS O LOSS 1 LOSS 2 LOSS 3

= Associate latent space with beam loss. NmtetHouso fouao alfouao 3]euso uHeuao sleuao eflouac 7jauso sleuao a

= No accelerator physics is used. \‘ ‘ ‘
| \
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F R I B a Facility for Rare Isotope Beams
) uU.Ss. D t tof E Offi f Sci . : o . .
w Michigea?‘na;tr;tinurc‘n)ive?seitrsy e of meenee ISNET-9, Washington University in St. Louis, Slide 18




Tomography
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Tomography at FRIB - Simulation

superconducting RF
1_+= linear accelerator

%h‘“ - o F=
W R are isotope

S B/ production area and ‘
isotope harvesting

® Linear accelerator

® Rare isotope production
with primary beams up to
400 kw, 200 MeV/u
uranium

® Understanding the beam
will help control beam loss
at high intensity

CHARGE_#ZELECTION

Knobs: Electric
Quadrupole, Solenoids
Diagnostics: Wire
Scanners (1D),
Viewers (2D)

FRONT END
UPPER FLOOR BEAMLINE

UPPER LEBT
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Maximum Entropy (MENT) method

The entropy of a beam distribution:

1) =~ [ [ dzdyf@,y)in f(a.y)

Distributions: 00000 Constrains are the profile measurement (projections) down
", stream, denoted p(s). Using Lagrange multiplier:
oooooo N
VN =D + 3 [ dsh() [ dtf ) = (o)
n=1
oy - % .
o - 0, et
AN VAN WA WV WY It can be solved, albeit with computati ifficulti
SR pAVA AN AVA ! , putational difficulties
Measurements ATV AR IAN AN
Projections WAL AIANLA A pn(s)
UWNJIATWIA f(@9) = ]] Anlsa@m)] - ha(s) =
VA ALV =i J @t s Piclsk (@0, yn)]
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MENT example for 4-D Distribution

Ts = Raxaxso PR N Q]

EICT,
17 AVLATAN ATV

7:7j e (‘r’C7 .C[;/7 y? y,)
R(ay) 0 Gro::dl;lfe ;I;ruth

0 R(Oéz) ¥ .

Rixqa —
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. a 12 10
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o 28 X 0.000 0.000
COﬂdItIOﬂS fOf 10 reconstructed reconstructed [1o.030 reconstructed [}¢.0s
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ML based MENT

Recent paper has demonstrated that MENT is ML friendly:
@ R. Roussel, et.al. PRL 130 145001, 2023

Base Particle Neural Network Proposed Initial Differentiable Accelerator Simulations Simulated Screen Images
Distribution Parameterized Transform Particle Distribution C |
n =2 |
i S AANS P n=1
L LK : —> ke & |
LR BN S TN 0 '
— 7 — f(Y:k ..
X ~ N(0,1) n = f(Yskn) (1) — KDE(Z,)

Reconstructed

Initial Distribution ) i
. Gradient calculation

) Experimental Screen Images

* .
i

i o
Ji# Optimization Step Loss Function
; - | L

& l=—log [(27\'(")35(;17} I N Z |RI) — Qi) -

R 4\_[]
3 . n,,]
Initial Image Difference
Y* = g(X;é’*) Distribution Entropy Constraint Penalty

« ML approach bypasses the challenging iteration process.
* Predict the core of the beam well.
> |s finite number of measurement good enough for the beam tail ‘s information?
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Summary

* Machine Learning techniques are powerful tools to boost accelerator performance.

= Currently the demonstrated ML application is limited to 10 knob/feature, order of magnitudes
less than number of control knobs in accelerator complex (~10K knobs)

* Problem Isolation and dimension reduction are the key.
» Beam matching and loss/background control is a challenging topic for NP accelerators.
* The link of beam distribution and losses is a challenging problem even for ML methods.

= A combination of data-driven and physics-based approach seems the promising way to
proceed.
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