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Stan Conference 2023

StanCon 2023

StanCon 2023

CONVENTION ON STAN PROGRAMMING AND BAYESIAN MODELING
WASHINGTON UNIVERSITY IN ST. LOUIS - JUNE 20-23, 2023

Buy tickets for StanCon 2023

Sponsors

We thank our sponsors who both support conference costs, scholarships, and Stan as a
whole. If you're interested in sponsoring StanCon, please email stancon2023@mc-

stan.org.
Washingon METRUM NUMFOCUS
University in St Louis RESEARCH GROUP OPEN CODE = BETTER SCIENCE
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Stan Conference 2023

Tutorials

Listed below are confirmed tutorials. Proposals for tutorials are reviewed and accepted
on a rolling basis throughout April 30th.

Fundamentals of Stan

Instructor: Charles Margossian (Flatiron Institute). This course serves as an
introduction to Stan and may be used as a stepping stone before taking more advanced
tutorials. Course description.

Introduction to Bayesian hierarchical modeling using Stan and brms
Instructor: Mitzi Morris (Columbia University) and Mike Lawrence (Axem
Neurotechnology)

Ordinary differential equation (ODE) models in Stan
Instructor: Daniel Lee.

Cognitive diagnostic models in R and Stan
Instructor: Jake Thompson (University of Kansas). Course description.

Advances of model assessment, selection, and inference after model selection\
Instructor: Andrew Johnson (Aalto University)
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Stan Conference 2023

Scholarships

The purpose of the StanCon scholarship is to make StanCon a more accessible and
inclusive event.

Participants who require financial assistance to attend the conference may apply for a
scholarship by filling out this form. The StanCon scholarship covers registration for
the tutorial and the main conference, as well as local lodging. Scholarships are
awarded on a need-base, and prioritize early career scientists, including students and
post-docs, and members of underrepresented groups in STEM.

Applications are reviewed on a rolling basis, and scholarships are awarded based on
available funds.

Organizers

e Charles Margossian (Flatiron Institute)

¢ Debashis Mondal (Washington University in St. Louis)
e Eric Ward (NOAA & University of Washington)

¢ Vianey Leos Barajas (University of Toronto)

¢ Yi Zhang (Sage Therapeutics, Inc)




Outline for the talk

An overview

Spatial models that
— combine Markov random fields and geostatistics

— give rise to scalable, matrix-free computation

Hamiltonian Monte Carlo sampling
— Inverse mass matrix calculations

— Leapfrog integration

Further challenges and future directions




/ Overview

Data y = modeled as response to linear predictor 1
n = ZB+ Fx +e€
B = treatment / variety / covariate effects
Z = design matrix (covariate information)
xr = random spatial effects
F = linear operator (typically an identity/ incidence/ averaging matrix)
e = residual effects

Gaussian priors on 3 and e.

Usually, goal is to make probabilistic inferences about g and x (MCMC or ...).

\Stochastic representation of x via geostatistical or MRF' approach.

Spatial variables are often observed indirectly, via treatments, covariates, blur, noise, ...

~
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/ Agricultural variety trials

\Goal is to pick best few varieties, but need to take account spatial effects.

/
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Yields

Variety
effects

Fertility

Residuals

Bayesian spatial analysis:

Original

Half-plots

effect of scale

Quarter—plots




Groundwater arsenic contamination in Bangladesh

Arsenic conc. (in ppb)
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Predictions for log arsenic contamination in Bangladesh

About 3000 observations. We embedded the data on a 500 x 300 grid.

\Predictions from 3 different models. /
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Sub-district-wise predictions

| | T

0.0 0.2 0.4 0.6 0.8 1.0

Left: Pr( average As level > 50ppb | data); right: Pr( max As level > 50ppb | data)

\_ /
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Disease mapping (Besag et al., 1991, Rue and Held, 2005, Mondal 2023)

For any region A,

y(A) = conditionally Poisson (e(A)R(A)), Z e(A) = Z y(A),
A A
where
RA)= 37 flu,o)edmoitsntons, ()
(u,v)€A
y(A) = +# of cases of disease in region (e.g., county) A
e(A) = expected number of cases of disease in region A
R(A) = relative risk
Ty, = q = q1 X g2 spatial random effects on a very fine grid
e = residual effects
f(u,v) = population density,

Goal is to predict spatial risk.

\_ /
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/ Application for German cancer data \

o
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Lung Cancer data in the period 1986-1990. 544 districts.

log standardized mortality ratios (left) and log population density (right).

N /
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/ Lung cancer in Germany

log std. mortality rate spatial component nugget effect

Data in the period 1986-1990. 544 districts embedded in 289 x 214 girds.

N
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/ Conditional auto-regressions on regular lattice \

... has an extensive literature following Besag, Kiinsch, Cressie, and others

Xu_, V+1

Xy-1,v  Xuv  Xyst,v

In the simplest case:

E (xu,v ‘ .- ) = Y10 (xu—l,v + xu—l—l,v) + Yo1 (xu,v—l + xu,v+1>> var (xu,v | .- ) = 02-

\Conditional on other values, z, , is Gaussian and o1, 10 > 0 & 701 + 710 < % /
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/ Conditional auto-regressions on regular lattice \

IIIIIIIIII-IIIIIIIII ndependence

IIIIEIIIIIIEIIIIEII o
2nd—order

IIIIIIIII--.IIIIIIII

drd-order

4th—order

Sth—order

SEAEREREES
EEEREEEEEEEssnEREEREEEEEE
Extends to higher-neighborhood-order models with

E(zyy]...) = Z%’l Tutw_i, Var(Tyol|...) = o2
k,l

Y0 =0, Y = Y-k,—1; and Dy Ve cos(wik +wol) <1, wi,wp € (=, 7).

\. In general, density factorized over the cliques (or complete subgraphs) of the graph./
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Geostatistical limits of conditional autoregressions

Yo1 + 710 — %

Conditional autoregression > Intrinsic autoregression

Yo1 HY10 = 3

\ \
Generalized Ornstein-Uhlenbeck > De Wijs process
process or Gaussian free-field

e Similar limit diagram for higher-neighborhood order models.

18
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Spatial models on finite arrays

Intrinsic auto-regressions typically have a distribution of the form

WV|J%r exp{—%xTW:E}

where W is proportional to the graph-Laplacian matrix.

e On a finite rectangular array, W has a spectral decomposition

W =MAM".

M is the two dimensional discrete cosine transformation (DCT).
e To approximate fractional Gaussian fields, replace W by W<, a > 0.

o For other higher neighborhood-order models, replace W by o(W), o() a positive

polynomial/ function

19



/Hamiltonian Monte Carlo sampling

o Consider a fictitious particle. Take
U#) =—logn(0 ]| x)
as its potential energy at position 6 as define its kinetic energy by
K(p) = 3p" M 'p.
e Define total energy or the Hamiltonian as
H(0,p) = U(6) + K(p).

e The dynamical system then follows the differential equations

do OH

— = — =—pm—1

dt op by

dp ~ OH  0U@) Vr(0|x)
dt 00 00  7w(@|=x)

\_

To sample from posterior w(6 | x), set up the Hamiltonian system as follows ...

20



/HMC with leapfrog approximations

Typically, Hamiltonian dynamics have no analytic solutions ...

e Leapfrog approximation for time step-size ¢ gives

p(t+10) = p(t)—gaw,
ot +0) = 9(t)+5M_1p<t—|—%5)’
pe+0) = ple+10) — 5200,

Hamiltonian Monte Carlo proceeds as follows:
1. At each iteration momentum p is proposed with a N (0, M)
2. Leapfrog is used to move T step forward and get (6%, p*)

3. The proposed state (8*,p*) is then accepted with probability

min{l, exp(—H (0%, p*) + H(@,p))}.

\_
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MCMC from Hamiltonian dynamics

S
2 300 | [ [ I I ] A 300 | [ [ [ [ |
- 15 10 05 00 -05 -1.0 - 15 10 05 00 -05 -1.0
Intercept Intercept

HMC path can climb or jump a ridge ...

\_
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/HMC for spatial logistic regressions \

Consider
Pf(yz':l):pz'> n; = log{pi/(1 —pi)} = z:8 + x; + €, 1=1,...,n

It follows that

n

exp{(z:8 + =i + &)y } T T T T
Oly, A —N3B3° 27 ZB)2 — A 2—A 2
w00 o ([ T g o 1y | o0 (2987 27 282 = dan" W2 = haeef2)

The inverse mass matrix takes the form

ZTDZ + X327 Z ZT D 7T D
M1 = DZ D+ W D :
DZ D D+ M1

where D is a diagonal matrix with
Dy = Elexp (2i8 + i + ) /{1 + exp (2i8 + z; + &) }?].

Let

\_

o2 = var (2,8 + z; + &)
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HMC for spatial logistic regressions

o? ith diagonal element of \; ' Z(Z'Z)~'Z' + Ay 'W =1 + A7 'I. Since

qs,j

58,7

0.003246343272134
0.051517477033972
0.195077912673858
0.315569823632818
0.274149576158423
0.131076880695470
0.027912418727972
0.001449567805354

1.365340806296348
1.059523971016916
0.830791313765644
0.650732166639391
0.508135425366489
0.396313345166341
0.308904252267995
0.238212616409306
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/HMC for spatial Poisson regressions

Consider

y; ~ Poisson(u;), ni = log{p;} = z:8 + z; + €, i=1,...,n

It follows that

(0ly, \) x [H exp{(ziB + x; + €)y; —exp (z:8 + x; + €)}
i=1

exp (= 381 Z1YZB/2 — Moxt W /2 — M€l €/2),

The inverse mass matrix again takes the form

ZT'DZ + X327 Z ZT D 7T D
M~ = DZ D+ MW D :
DZ D D+ M1

where D is a diagonal matrix with

\_

Dj; = Elexp (2:8 + x; + €;)] = eXP(U?/Q)a o; = var (ziff + x; + &).
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/HMC for spatial GLMM

Consider
yi ~ exp[{yivi — b(vi)}/ai(9) + ci(yi, D)), vi=zif+ai+e  i=1,---,n,

It follows that

The inverse mass matrix again takes the form

ZT'DZ +XsZT2Z  ZTD ZTD
M~ = —E.[0%log{f(0 | -)}/06°] = DZ D + X\ W D
DZ D D+ M1

where D is a diagonal matrix with

Dy = B(V'()/ai(6)) = h(o?), o =var (z8 + 2+ €).

\For non-canonical link, the formula is slightly complicated ...

(0 |y, A) o Hexp {yivi—b(v;)}/a(d)+c(yi, @) exp{—s ML ZTZB— 32" Wx— s Az€e” €}
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/HMC for spatial GLMM

Consider
yi ~ exp[{yivi — b(vi)}/ai(¢) + ci(yi, &), vi = 2; B+ fi 2 + € 1=1,---,n,

It follows that

The inverse mass matrix again takes the form

ZTDZ + X327 Z ZTDF ZTD
M~ = —Eqg.[0°log{f (0| )}/06°] = FTDZ FTDF+ )XW  FTD
DZ DF D+ M1

where D is a diagonal matrix with

Dy = E(b”(yz-) /ai((/ﬁ)) — h(02), o =var(zi8+ ffzi + ).

\Slightly different formula non-canonical link. Computation can be challenging!

(0 |y, A) ox Hexp {yivi—=b(vi)}/a(@)+c(yi, @) exp{—s M BT Z"ZB— 32" Wx— S A3€e” €}

/
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Computing the diagonal of the inverse

e If Aisn X n, sparse and positive-definite, consider

and

A=LDU

At=U"'Dt 4+ A 1-L), Al'=D1'L'4+I-U0)A"

Enable us to obtain entries of A~! belonging to the sparsity pattern of L and U.

Order of complexity O(n3/?)

A singular = order of complexity increases. In general, order of complexity is O(n?)

Probing or other approximations does not work that well.

Theorem (Mondal, 2023) : For rectangular arrays, can compute diagonals of W1

or o(W)~! in O(nlog(n)) steps using two dimensional DCT.

/
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Further challenges and future directions

Scalable computation for the diagonal of inverse?

o« HMC steps for dispersion parameters?

e Other tuning parameters?

e Mixing rate?

e Mass matrix from other complicated models?

o spatial analysis with and empirical likelihood (EL) methods

\_

I am particularly interested in spatial statistics and EL methods ...
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