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Alchemy on the Earth and in the universe

• Medieval alchemists failed to 
transform one chemical element 
to another.

• We can now do “modern alchemy” 
in facilities for nuclear physics!

• Large-scale producers of heavy  
elements exist in the universe, 
such as the neutron-star merger. 
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Rapid neutron-capture process and nuclear inputs for simulation

Astrophysical 
environment

Nuclear 
physics

▪ The rapid neutron-capture process (r process) plays a key role in the synthesis of heavy nuclei. 
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▪ New algorithms in the framework of nuclear density functional theory make it feasible to perform self-
consistent microscopic calculations of beta decays through the nuclear landscape. 

▪ Some EDF parameters need to be constrained by experimental data on the beta decay. 

Mean-field 
approximation

Finite amplitude method enables large-scale studies

• Each nucleon moves in the mean field generated by other nucleons.
The mean field is specified by the Skyrme energy density functional (EDF).

• The ground state is described by the Hartree-Fock-Bogoliubov (HFB) approach.
• The beta-decay transition is calculated through the finite-amplitude method (FAM), where 

an external charge-changing field is applied as perturbation to trigger the transition.
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▪ Skyrme parameterization UNDEF1-HFB is employed. 

▪ Parameters to calibrate include: 
— Landau-Migdal parameter 𝑔0

′ ,
— Normalized isoscalar pairing strength 𝑣0,
— Axial-vector coupling 𝑔𝐴 (quenching effect).

Parameters to calibrate and fit targets

▪ Fit targets include two types of data: 
— Gamow-Teller-resonance energies of 4 

selected doubly and semi-magic systems,
— 𝛽−-decay half lives of 25 even-even nuclei. 

▪ The data selection is based on Phys. Rev. C 93, 
014304 (2016). 

https://link.aps.org/doi/10.1103/PhysRevC.93.014304
https://link.aps.org/doi/10.1103/PhysRevC.93.014304
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Numerical Framework

HFBTHO PNFAM

PyNFAM

Physics-

model 

wrapper

Data generation 

for emulators

χ2 optimization 

routine 

Bayesian 

model 

calibration
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▪ We minimize the weighted sum of squared errors (residuals) with POUNDERS: 

𝜒2 𝒙 =
1

𝑛𝑑 −𝑛𝑥
෍

𝑖=1

𝑛𝑑
𝑠𝑖 𝒙 −𝑑𝑖

𝑤𝑖

2

.

▪ Parameter values obtained from the χ2 optimization are shown in the table below. 
These parameters are weakly correlated. 

χ2 optimization is the first step for model calibration

Fit 𝒈𝟎
′ 𝒈𝟏

′ 𝒗𝟎 𝒈𝑨

A 1.59560 (0.039) 0 (fixed) −0.99993 (0.178) 1 (fixed)

B 1.59184 (0.034) 0 (fixed) −1.19745 (0.179) 0.50345 (0.143)
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KOH prediction 
𝑦 = 𝑓 + 𝛿 + 𝜖

Physics-model 
prediction 𝑓(𝒕, 𝒙)

Discrepancy 𝛿(𝒕)
(model deficiency)

Random error 𝜖

▪ Compared with the χ2 optimization, Bayesian inference provides a reliable approach to obtain the 
distributions of parameter values, which is useful for uncertainty quantification and propagation. 

▪ The foundation of the Bayesian model calibration is Bayes’ theorem:
𝑃 params obs ∝ 𝑃 obs params 𝑃 params .

▪ The likelihood is specified by the Kennedy-O’Hagan (KOH) model.

Bayesian model calibration with model deficiency

Gaussian-process 
(GP) emulators

𝒕 = 𝑍, 𝑁
𝒙 = (𝑔0

′ , 𝑣0, 𝑔𝐴)

GP hyperparameters
𝜽𝛿 = (𝜼𝛿 , 𝒍𝛿)

• 𝑓 is fitted to reproduce physics-model outputs.
• 𝑦 is fitted to reproduce experimental data.

GP hyperparameters
𝜽𝑓 = (𝜼𝑓, 𝒍𝑓)
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▪ We use the Matérn kernel as the covariance function: 𝑘 𝒙, 𝒙′ = 𝜂
21−𝜐

Γ(𝜐)

2𝜐|𝒙−𝒙′|

𝑙

𝜐

𝐾𝜐
2𝜐|𝒙−𝒙′|

𝑙
,

where 𝐾𝜐 is the modified Bessel function.

▪ Compared with the radial basis function, samples generated by the GP with a Matérn covariance 
function are not smooth, making it easier to emulate unsmooth outputs of the physics model.

Unsmooth covariance function is better for GP emulators



10
LLNL-PRES-849390

▪ Fitting the KOH model does not only calibrate parameters 𝒙 used in the physics model, but also build a 
statistical model 𝛿 that can correct the physics model. 

Can the KOH model kill two birds with one stone?

We limit the number of experimental 
data points to reduce computational 
cost and avoid overfitting.

The more data points we provide, the 
better the discrepancy model performs. 

Possible solution: 
Iterative model calibration? 
Fit different parts against different data? 
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▪ With all the priors of parameters (including GP hyperparameters) and the likelihood specified, we can 
directly perform MCMC sampling in full parameter space. 

▪ A faster but more approximate method is to sample different sets of parameters step-by-step. 

Integrated vs. modular approaches

Integrated method: 
Sample in full parameter space

vs.

Module method: Sample step-by-step

1. Build the physics-model 
emulator 𝑓: Sample 𝜽𝑓 to 

fit physics-model outputs.

2. Fix 𝜽𝑓 at its mean value.

3. Sample other parameters 
to fit experimental data. 
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▪ If priors of GP hyperparameters are not chosen carefully, 𝑓 can perform badly (far from experimental 
data) but 𝛿 can well reproduce experimental observations. 

▪ A hierarchical prior structure for the magnitudes of variances (𝜎𝜖
2 < 𝜎𝛿

2 < 𝜎𝑓
2) is thus adopted:

1/𝜂𝑓 ~ Γ 𝑎 = 10, 𝑏 = 10 ,

1/𝜂𝛿 ~Γ 𝑎 = 10, 𝑏 = 0.3 ,
1/𝜎𝜖

2 ~Γ 𝑎 = 10, 𝑏 = 0.012 .
— The mean value of the Gamma distribution is a/b.

▪ This prior structure ensures that the variance in experimental data is most explained by 𝑓, less by 𝛿, 
and least by 𝜖.

▪ Is the choice of 𝜂𝛿 for different data types equivalent to the choice of weights in the 𝜒2 optimization? 

Hierarchical priors ensure that we calibrate the physics model
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Preliminary results: Posterior distributions

𝑔𝐴 = 1
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Preliminary results: Posterior distributions
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Preliminary results: Correlation

Integrated method
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Conclusions and outlook

KOH prediction 𝑦

Physics-model 
prediction 𝑓

Discrepancy 𝛿
(model deficiency)

Random error 𝜀
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Conclusions and outlook

▪ Astrophysical simulations may help us on the selection of fit targets. 

▪ The FAM with two-body currents is ready to use, which eliminates the 
necessity to fit 𝑔𝐴 but introduces new unknown parameters. 
We can use the current framework to calibrate these new parameters.

▪ We will also extend our framework for other nuclear observables, 
such as the gamma decay. 

▪ We are going to explore the application of the reduced basis method 
for better emulators of FAM codes.

▪ Statisticians are exploring the variational Bayesian method to totally 
remove the MCMC sampling in our framework. 

▪ Bayesian model mixing can help us build models that vary with Z and 
N and provide best results in various regions. 
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Additional remarks on the χ2 optimization 

• POUNDERS (Practical Optimization Using No 
Derivatives for sums of Squares) in 
PETSc/TAO is the numerical tool for the 
optimization. 

• It was first used in the fits of UNEDF 
functionals (Phys. Rev. C 82, 024313 (2010)). 

▪ The χ2 optimization is based on the assumption that all 
the normalized residuals are independently Gaussian 
distributed: 𝜺~𝑁(0, 𝜎2𝐼𝑛𝑑). 

▪ The probability distribution of x is 𝑃 𝒙 ∝

exp −
𝜒2 𝒙

2𝜎2
≈ 𝐶exp −

1

4𝜎2
𝒙 − ෝ𝒙 𝑇𝐻 𝒙 − ෝ𝒙 , 

where ෝ𝒙 is the minimum point of 𝜒2 , H is the Hessian 
matrix (proportional to the covariance matrix of x). 

▪ Approximate formula for the covariance 
matrix Cov ෝ𝒙 ≈ 𝜒2 ෝ𝒙 𝐺𝑇 ෝ𝒙 𝐺 ෝ𝒙 −1, where Jacobian 

matrix G is defined as 𝐺𝑖𝑗 =
𝜕𝜀𝑖

𝜕𝑥𝑗
.

https://link.aps.org/doi/10.1103/PhysRevC.82.024313
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Results with the tensor term included (χ2 optimization)

Fit 𝒈𝟎
′ 𝒈𝟏

′ 𝒗𝟎 𝒈𝑨

A 1.59560 (0.039) 0 (fixed) −0.99993 (0.178) 1 (fixed)

B 1.59184 (0.034) 0 (fixed) −1.19745 (0.179) 0.50345 (0.143)

C 1.73245 (0.820) −0.37034 (2.143) −0.99920 (0.183) 1 (fixed)

D 2.72206 (0.422) −2.54125 (0.781) −1.23511 (0.179) 0.41168 (0.132)

Strong correlation between 𝑔0
′ and 𝑔1

′ is seen in Fits C and D.  
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Predictions of Fit B

▪ For even-even nuclei with known 𝛽−-decay half 
lives, the figure shows ratios between calculated 
(with optimal parameter values) and experimental 
half lives.

▪ The error is typical for beta-decay calculations. 

▪ Errors are larger for nuclei with longer half lives, 
primarily due to the leptonic phase-space factor.
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Number of effective parameters (PCA, χ2 optimization)
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Predictions by the KOH model after calibration 

𝑔𝐴 free to vary
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