
Information and Statistics for Nuclear Experiment and Theory workshop (ISNET-9)

Department of Mathematical Sciences, Durham University

Ian Vernon

Known Boundary Emulation

Joint work with: Sam Jackson, Jonathan Cumming.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 1 / 73

Overview

Incorporating Known Boundaries into a GP emulator.

Designing runs in the presence of known boundaries.

Application to Systems Biology model of Arabidopsis.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 2 / 73

Motivation for use of GP Emulators

I am a Bayesian Statistician, interested in using GP style emulation within various
Uncertainty Quantification analyses (Model Calibration, History matching, decision
support etc).

GP emulators can mimic complex scientific models but are extremely fast (and
provide uncertainties).

We at Durham University, UK, have applied these emulators to multiple scientific
areas including:

I Cosmology: galaxy formation simulations, very expensive.

I Epidemiology: large stochastic agent based models of HIV, Typhoid, TB, Covid, HPV.

I Systems biology models: metabolic networks, plant root models.

I Geology models.

I Environmental models.

I Climate models.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 3 / 73

EAGLE Outputs

Gas Temperature

Visual spectrum Dark Matter density

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 4 / 73

Emulation Basic Structure

We consider an expensive computer model represented as a function f(x) ∈ R,
with d-dimensional input vector x ∈ X , where X ⊂ Rd is a pre-specified input
parameter space of interest.

We represent our beliefs about the unknown f(x) at unevaluated input x via an
emulator u(x). This maybe a Gaussian process (or in a less fully specified version,
a weakly second order stationary stochastic process):

f(x) = u(x)

We make the judgement, consistent with most of the computer model literature,
that the u(x) have a product correlation structure:

Cov[u(x), u(x′)] = σ2r(x− x′) = σ2
d∏
i=1

ri(xi − x′i)

with ri(0) = 1, corresponding to deterministic f(x).

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 5 / 73

Emulation Basic Structure

We consider an expensive computer model represented as a function f(x) ∈ R,
with d-dimensional input vector x ∈ X , where X ⊂ Rd is a pre-specified input
parameter space of interest.

We represent our beliefs about the unknown f(x) at unevaluated input x via an
emulator u(x). This maybe a Gaussian process (or in a less fully specified version,
a weakly second order stationary stochastic process):

f(x) = u(x)

We make the judgement, consistent with most of the computer model literature,
that the u(x) have a product correlation structure:

Cov[u(x), u(x′)] = σ2r(x− x′) = σ2
d∏
i=1

ri(xi − x′i)

with ri(0) = 1, corresponding to deterministic f(x).

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 5 / 73

Emulation Basic Structure

We consider an expensive computer model represented as a function f(x) ∈ R,
with d-dimensional input vector x ∈ X , where X ⊂ Rd is a pre-specified input
parameter space of interest.

We represent our beliefs about the unknown f(x) at unevaluated input x via an
emulator u(x). This maybe a Gaussian process (or in a less fully specified version,
a weakly second order stationary stochastic process):

f(x) = u(x)

We make the judgement, consistent with most of the computer model literature,
that the u(x) have a product correlation structure:

Cov[u(x), u(x′)] = σ2r(x− x′) = σ2
d∏
i=1

ri(xi − x′i)

with ri(0) = 1, corresponding to deterministic f(x).

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 5 / 73

Emulation Basic Structure

Product correlation structures are very common, e.g. the Gaussian structure:

r(x− x′) =
d∏
i=1

exp{−|xi − x′i|2/θ2i }.

As usual, we will also assume stationarity, but do not require it for the following.

If we perform a set of runs at locations xD = (x(1), . . . , x(n)) over X , giving model
outputs D = (f(x(1)), . . . , f(x(n)))T , then we can update our beliefs about the
computer model f(x) in light of D.

This can be done either using Bayes theorem (if u(x) is assumed to be a full
Gaussian process) or using the Bayes linear update, which following DeFinetti,
treats expectation as primitive, and requires only a second order specification:

ED[f(x)] = E[f(x)] + Cov[f(x), D]Var[D]−1(D − E[D])

VarD[f(x)] = Var[f(x)]− Cov[f(x), D]Var[D]−1Cov[D, f(x)]

CovD[f(x), f(x′)] = Cov[f(x), f(x′)]− Cov[f(x), D]Var[D]−1Cov[D, f(x′)]

where ED[f(x)], VarD[f(x)] and CovD[f(x), f(x′)] are the expectation, variance
and covariance of f(x) adjusted by D.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 6 / 73

Emulation Basic Structure

Product correlation structures are very common, e.g. the Gaussian structure:

r(x− x′) =
d∏
i=1

exp{−|xi − x′i|2/θ2i }.

As usual, we will also assume stationarity, but do not require it for the following.

If we perform a set of runs at locations xD = (x(1), . . . , x(n)) over X , giving model
outputs D = (f(x(1)), . . . , f(x(n)))T , then we can update our beliefs about the
computer model f(x) in light of D.

This can be done either using Bayes theorem (if u(x) is assumed to be a full
Gaussian process) or using the Bayes linear update, which following DeFinetti,
treats expectation as primitive, and requires only a second order specification:

ED[f(x)] = E[f(x)] + Cov[f(x), D]Var[D]−1(D − E[D])

VarD[f(x)] = Var[f(x)]− Cov[f(x), D]Var[D]−1Cov[D, f(x)]

CovD[f(x), f(x′)] = Cov[f(x), f(x′)]− Cov[f(x), D]Var[D]−1Cov[D, f(x′)]

where ED[f(x)], VarD[f(x)] and CovD[f(x), f(x′)] are the expectation, variance
and covariance of f(x) adjusted by D.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 6 / 73

Emulation Basic Structure

Product correlation structures are very common, e.g. the Gaussian structure:

r(x− x′) =
d∏
i=1

exp{−|xi − x′i|2/θ2i }.

As usual, we will also assume stationarity, but do not require it for the following.

If we perform a set of runs at locations xD = (x(1), . . . , x(n)) over X , giving model
outputs D = (f(x(1)), . . . , f(x(n)))T , then we can update our beliefs about the
computer model f(x) in light of D.

This can be done either using Bayes theorem (if u(x) is assumed to be a full
Gaussian process) or using the Bayes linear update, which following DeFinetti,
treats expectation as primitive, and requires only a second order specification:

ED[f(x)] = E[f(x)] + Cov[f(x), D]Var[D]−1(D − E[D])

VarD[f(x)] = Var[f(x)]− Cov[f(x), D]Var[D]−1Cov[D, f(x)]

CovD[f(x), f(x′)] = Cov[f(x), f(x′)]− Cov[f(x), D]Var[D]−1Cov[D, f(x′)]

where ED[f(x)], VarD[f(x)] and CovD[f(x), f(x′)] are the expectation, variance
and covariance of f(x) adjusted by D.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 6 / 73

Emulation Basic Structure

Although we will work within the Bayes linear formalism, the derived results will
apply directly to the fully Bayesian case, were one willing to make the additional
assumption of full normality that use of a Gaussian process entails.

In this case all Bayes linear adjusted quantities can be directly mapped to the
corresponding posterior versions e.g.

ED[f(x)]→ E[f(x)|D] and VarD[f(x)]→ Var[f(x)|D].

See Goldstein and Wooff (2007), for discussion of the benefits of using a Bayes
linear approach.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 7 / 73

Known Boundary Emulation: Motivation

This is all fine, however, for some simulators, there exist input parameter settings,
lying possibly on boundaries or hyperplanes in the input parameter space, where
the simulator can be solved analytically (or just significantly faster).

This may be due to the system in question, or at least a subset of the system
outputs, behaving in a much simpler way for particular input settings.

This is possibly due for example to various modules decoupling from more
complex parts of the model (possibly when certain inputs are set to zero, switching
some processes off).

Note that this leads to Dirichlet boundary conditions, i.e. known simulator
behaviour on various hyperplanes within X , that impose constraints on the
emulator itself, not the same as Dirichlet boundary conditions on the physical
model (which we do not require here).

The goal then, is to incorporate these known boundaries, situated where we
essentially know the function output, into the Bayesian emulation process which
should lead to significantly improved emulators.

We do this by formally updating the emulators by the information contained on the
known boundaries, obtaining analytic results, then updating by runs D as usual.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 8 / 73

Known Boundary Emulation: Motivation

This is all fine, however, for some simulators, there exist input parameter settings,
lying possibly on boundaries or hyperplanes in the input parameter space, where
the simulator can be solved analytically (or just significantly faster).

This may be due to the system in question, or at least a subset of the system
outputs, behaving in a much simpler way for particular input settings.

This is possibly due for example to various modules decoupling from more
complex parts of the model (possibly when certain inputs are set to zero, switching
some processes off).

Note that this leads to Dirichlet boundary conditions, i.e. known simulator
behaviour on various hyperplanes within X , that impose constraints on the
emulator itself, not the same as Dirichlet boundary conditions on the physical
model (which we do not require here).

The goal then, is to incorporate these known boundaries, situated where we
essentially know the function output, into the Bayesian emulation process which
should lead to significantly improved emulators.

We do this by formally updating the emulators by the information contained on the
known boundaries, obtaining analytic results, then updating by runs D as usual.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 8 / 73

Known Boundary Emulation: Motivation

This is all fine, however, for some simulators, there exist input parameter settings,
lying possibly on boundaries or hyperplanes in the input parameter space, where
the simulator can be solved analytically (or just significantly faster).

This may be due to the system in question, or at least a subset of the system
outputs, behaving in a much simpler way for particular input settings.

This is possibly due for example to various modules decoupling from more
complex parts of the model (possibly when certain inputs are set to zero, switching
some processes off).

Note that this leads to Dirichlet boundary conditions, i.e. known simulator
behaviour on various hyperplanes within X , that impose constraints on the
emulator itself, not the same as Dirichlet boundary conditions on the physical
model (which we do not require here).

The goal then, is to incorporate these known boundaries, situated where we
essentially know the function output, into the Bayesian emulation process which
should lead to significantly improved emulators.

We do this by formally updating the emulators by the information contained on the
known boundaries, obtaining analytic results, then updating by runs D as usual.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 8 / 73

Known Boundary Emulation: Motivation

This is all fine, however, for some simulators, there exist input parameter settings,
lying possibly on boundaries or hyperplanes in the input parameter space, where
the simulator can be solved analytically (or just significantly faster).

This may be due to the system in question, or at least a subset of the system
outputs, behaving in a much simpler way for particular input settings.

This is possibly due for example to various modules decoupling from more
complex parts of the model (possibly when certain inputs are set to zero, switching
some processes off).

Note that this leads to Dirichlet boundary conditions, i.e. known simulator
behaviour on various hyperplanes within X , that impose constraints on the
emulator itself, not the same as Dirichlet boundary conditions on the physical
model (which we do not require here).

The goal then, is to incorporate these known boundaries, situated where we
essentially know the function output, into the Bayesian emulation process which
should lead to significantly improved emulators.

We do this by formally updating the emulators by the information contained on the
known boundaries, obtaining analytic results, then updating by runs D as usual.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 8 / 73

Known Boundary Emulation: Motivation

This is all fine, however, for some simulators, there exist input parameter settings,
lying possibly on boundaries or hyperplanes in the input parameter space, where
the simulator can be solved analytically (or just significantly faster).

This may be due to the system in question, or at least a subset of the system
outputs, behaving in a much simpler way for particular input settings.

This is possibly due for example to various modules decoupling from more
complex parts of the model (possibly when certain inputs are set to zero, switching
some processes off).

Note that this leads to Dirichlet boundary conditions, i.e. known simulator
behaviour on various hyperplanes within X , that impose constraints on the
emulator itself, not the same as Dirichlet boundary conditions on the physical
model (which we do not require here).

The goal then, is to incorporate these known boundaries, situated where we
essentially know the function output, into the Bayesian emulation process which
should lead to significantly improved emulators.

We do this by formally updating the emulators by the information contained on the
known boundaries, obtaining analytic results, then updating by runs D as usual.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 8 / 73

Known Boundary Emulation: Motivation

This is all fine, however, for some simulators, there exist input parameter settings,
lying possibly on boundaries or hyperplanes in the input parameter space, where
the simulator can be solved analytically (or just significantly faster).

This may be due to the system in question, or at least a subset of the system
outputs, behaving in a much simpler way for particular input settings.

This is possibly due for example to various modules decoupling from more
complex parts of the model (possibly when certain inputs are set to zero, switching
some processes off).

Note that this leads to Dirichlet boundary conditions, i.e. known simulator
behaviour on various hyperplanes within X , that impose constraints on the
emulator itself, not the same as Dirichlet boundary conditions on the physical
model (which we do not require here).

The goal then, is to incorporate these known boundaries, situated where we
essentially know the function output, into the Bayesian emulation process which
should lead to significantly improved emulators.

We do this by formally updating the emulators by the information contained on the
known boundaries, obtaining analytic results, then updating by runs D as usual.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 8 / 73

Single Known Boundary

x1

x2 Known Boundary K

●

●

●

●

●● xxK

y(1)

y(m)

a

x1

x2 Known Boundary K

●● xxK

a

●● x'x'K
a'b

●

●

●

●

y(1)

y(m)

The single known boundary case. Left panel: the points required for the EK [f(x)] and VarK [f(x)] calculation.
x is the point we wish to emulate at, xK its orthogonal projection onto the known boundary K at distance a.
Right panel: the points required for the CovK [f(x), f(x′)] calculation. x and x′ are points we wish to update
the covariance at, while xK and x′K are their orthogonal projection onto the known boundary K, at distances a
and a′ respectively. In both panels, the y(i) represent a large number of points for which we can evaluate
f(y(i)) analytically (or at least very quickly).

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 9 / 73

How to update by knowledge of a single boundary 1

We assume K is a d− 1 dimensional hyperplane perpendicular to the x1 direction.

We wish to update our beliefs about f(x), at the input point x ∈ X .

We can evaluate f(x) at a large number, m, of points on K which we denote
y(1), . . . , y(m), and at the projection of x onto the boundary K denoted xK , giving
the m+ 1 column vector:

K = (f(xK), f(y(1)), . . . , f(y(m)))T

We wish to evaluate the expression for EK [f(x)],

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

however due to m being very large (billions or trillions say depending on d) we
cannot evaluate this directly as we cannot evaluate the Var[K]−1 term.

However, if x = xK we know that trivially EK [f(xK)] = f(xK) and
VarK [f(xK)] = 0, as f(x) is deterministic.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 10 / 73

How to update by knowledge of a single boundary 1

We assume K is a d− 1 dimensional hyperplane perpendicular to the x1 direction.

We wish to update our beliefs about f(x), at the input point x ∈ X .

We can evaluate f(x) at a large number, m, of points on K which we denote
y(1), . . . , y(m), and at the projection of x onto the boundary K denoted xK , giving
the m+ 1 column vector:

K = (f(xK), f(y(1)), . . . , f(y(m)))T

We wish to evaluate the expression for EK [f(x)],

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

however due to m being very large (billions or trillions say depending on d) we
cannot evaluate this directly as we cannot evaluate the Var[K]−1 term.

However, if x = xK we know that trivially EK [f(xK)] = f(xK) and
VarK [f(xK)] = 0, as f(x) is deterministic.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 10 / 73

How to update by knowledge of a single boundary 1

We assume K is a d− 1 dimensional hyperplane perpendicular to the x1 direction.

We wish to update our beliefs about f(x), at the input point x ∈ X .

We can evaluate f(x) at a large number, m, of points on K which we denote
y(1), . . . , y(m), and at the projection of x onto the boundary K denoted xK , giving
the m+ 1 column vector:

K = (f(xK), f(y(1)), . . . , f(y(m)))T

We wish to evaluate the expression for EK [f(x)],

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

however due to m being very large (billions or trillions say depending on d) we
cannot evaluate this directly as we cannot evaluate the Var[K]−1 term.

However, if x = xK we know that trivially EK [f(xK)] = f(xK) and
VarK [f(xK)] = 0, as f(x) is deterministic.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 10 / 73

How to update by knowledge of a single boundary 1

We assume K is a d− 1 dimensional hyperplane perpendicular to the x1 direction.

We wish to update our beliefs about f(x), at the input point x ∈ X .

We can evaluate f(x) at a large number, m, of points on K which we denote
y(1), . . . , y(m), and at the projection of x onto the boundary K denoted xK , giving
the m+ 1 column vector:

K = (f(xK), f(y(1)), . . . , f(y(m)))T

We wish to evaluate the expression for EK [f(x)],

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

however due to m being very large (billions or trillions say depending on d) we
cannot evaluate this directly as we cannot evaluate the Var[K]−1 term.

However, if x = xK we know that trivially EK [f(xK)] = f(xK) and
VarK [f(xK)] = 0, as f(x) is deterministic.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 10 / 73

How to update by knowledge of a single boundary 1

We assume K is a d− 1 dimensional hyperplane perpendicular to the x1 direction.

We wish to update our beliefs about f(x), at the input point x ∈ X .

We can evaluate f(x) at a large number, m, of points on K which we denote
y(1), . . . , y(m), and at the projection of x onto the boundary K denoted xK , giving
the m+ 1 column vector:

K = (f(xK), f(y(1)), . . . , f(y(m)))T

We wish to evaluate the expression for EK [f(x)],

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

however due to m being very large (billions or trillions say depending on d) we
cannot evaluate this directly as we cannot evaluate the Var[K]−1 term.

However, if x = xK we know that trivially EK [f(xK)] = f(xK) and
VarK [f(xK)] = 0, as f(x) is deterministic.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 10 / 73

How to update by knowledge of a single boundary 2

As f(xK) is included as the first element of K, we note that

I(m+1) = Var[K]Var[K]−1

=


Cov[f(xK),K]

Cov[f(y(1)),K]
...

Cov[f(y(m)),K]

Var[K]−1

Taking the first row gives

Cov[f(xK),K]Var[K]−1 = (1, 0, · · · , 0)

As we have defined xK as the perpendicular projection of x onto K, we can write

x = xK + (a, 0, . . . , 0)

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 11 / 73

How to update by knowledge of a single boundary 2

As f(xK) is included as the first element of K, we note that

I(m+1) = Var[K]Var[K]−1

=


Cov[f(xK),K]

Cov[f(y(1)),K]
...

Cov[f(y(m)),K]

Var[K]−1

Taking the first row gives

Cov[f(xK),K]Var[K]−1 = (1, 0, · · · , 0)

As we have defined xK as the perpendicular projection of x onto K, we can write

x = xK + (a, 0, . . . , 0)

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 11 / 73

How to update by knowledge of a single boundary 2

As f(xK) is included as the first element of K, we note that

I(m+1) = Var[K]Var[K]−1

=


Cov[f(xK),K]

Cov[f(y(1)),K]
...

Cov[f(y(m)),K]

Var[K]−1

Taking the first row gives

Cov[f(xK),K]Var[K]−1 = (1, 0, · · · , 0)

As we have defined xK as the perpendicular projection of x onto K, we can write

x = xK + (a, 0, . . . , 0)

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 11 / 73

How to update by knowledge of a single boundary 2

Now we can exploit the symmetry of the product correlation structure:

Cov[f(x), f(xK)] = σ2
d∏
i=1

ri(xi − xKi) = σ2r1(x1 − xK1) = σ2r1(a)

= r1(a) Cov[f(xK), f(xK)]

since xi = xKi for i = 2, . . . , d and ri(0) = 1. Furthermore,

Cov[f(x), f(y(j))] = σ2
d∏
i=1

ri(xi − y(j)i) = σ2r1(x1 − xK1)

d∏
i=2

ri(xi − y(j)i)

= σ2r1(a)
d∏
i=2

ri(x
K
i − y

(j)
i) = r1(a) Cov[f(xK), f(y(j))]

since the first component of xK and y(j) must be equal as they all lie on K.
Combining we obtain the covariance between f(x) and the set K

Cov[f(x),K] =
(

Cov[f(x), f(xK)],Cov[f(x), f(y(1))], · · · ,Cov[f(x), f(y(m))]
)

= r1(a) Cov[f(xK),K]

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 12 / 73

How to update by knowledge of a single boundary 2

Now we can exploit the symmetry of the product correlation structure:

Cov[f(x), f(xK)] = σ2
d∏
i=1

ri(xi − xKi) = σ2r1(x1 − xK1) = σ2r1(a)

= r1(a) Cov[f(xK), f(xK)]

since xi = xKi for i = 2, . . . , d and ri(0) = 1. Furthermore,

Cov[f(x), f(y(j))] = σ2
d∏
i=1

ri(xi − y(j)i) = σ2r1(x1 − xK1)

d∏
i=2

ri(xi − y(j)i)

= σ2r1(a)
d∏
i=2

ri(x
K
i − y

(j)
i) = r1(a) Cov[f(xK), f(y(j))]

since the first component of xK and y(j) must be equal as they all lie on K.
Combining we obtain the covariance between f(x) and the set K

Cov[f(x),K] =
(

Cov[f(x), f(xK)],Cov[f(x), f(y(1))], · · · ,Cov[f(x), f(y(m))]
)

= r1(a) Cov[f(xK),K]

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 12 / 73

How to update by knowledge of a single boundary 3

We can use these results to analytically solve the adjusted emulator expectation

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

= E[f(x)] + r1(a) Cov[f(xK),K]Var[K]−1(K − E[K])

= E[f(x)] + r1(a)(1, 0, · · · , 0)(K − E[K])

= E[f(x)] + r1(a)(f(xK)− E[f(xK)])

Thus we have eliminated the need to explicitly invert the large matrix Var[K].

Similarly, we find the adjusted variance to be

VarK [f(x)] = Var[f(x)]− Cov[f(x),K]Var[K]−1Cov[K, f(x)]

= Var[f(x)]− r1(a)(1, 0, · · · , 0)Cov[K, f(x)]

= Var[f(x)]− r1(a)Cov[f(xK), f(x)]

= σ2(1− r1(a)2)

As these results require only evaluations of the analytic boundary function and the
correlation function they can be implemented with trivial computational cost in
comparison to a direct update by K.

Note that they critically rely on the projected point f(xK) being in K: we only
require finite boundaries such that Pr(X) ⊂ K.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 13 / 73

How to update by knowledge of a single boundary 3

We can use these results to analytically solve the adjusted emulator expectation

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

= E[f(x)] + r1(a) Cov[f(xK),K]Var[K]−1(K − E[K])

= E[f(x)] + r1(a)(1, 0, · · · , 0)(K − E[K])

= E[f(x)] + r1(a)(f(xK)− E[f(xK)])

Thus we have eliminated the need to explicitly invert the large matrix Var[K].

Similarly, we find the adjusted variance to be

VarK [f(x)] = Var[f(x)]− Cov[f(x),K]Var[K]−1Cov[K, f(x)]

= Var[f(x)]− r1(a)(1, 0, · · · , 0)Cov[K, f(x)]

= Var[f(x)]− r1(a)Cov[f(xK), f(x)]

= σ2(1− r1(a)2)

As these results require only evaluations of the analytic boundary function and the
correlation function they can be implemented with trivial computational cost in
comparison to a direct update by K.

Note that they critically rely on the projected point f(xK) being in K: we only
require finite boundaries such that Pr(X) ⊂ K.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 13 / 73

How to update by knowledge of a single boundary 3

We can use these results to analytically solve the adjusted emulator expectation

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

= E[f(x)] + r1(a) Cov[f(xK),K]Var[K]−1(K − E[K])

= E[f(x)] + r1(a)(1, 0, · · · , 0)(K − E[K])

= E[f(x)] + r1(a)(f(xK)− E[f(xK)])

Thus we have eliminated the need to explicitly invert the large matrix Var[K].

Similarly, we find the adjusted variance to be

VarK [f(x)] = Var[f(x)]− Cov[f(x),K]Var[K]−1Cov[K, f(x)]

= Var[f(x)]− r1(a)(1, 0, · · · , 0)Cov[K, f(x)]

= Var[f(x)]− r1(a)Cov[f(xK), f(x)]

= σ2(1− r1(a)2)

As these results require only evaluations of the analytic boundary function and the
correlation function they can be implemented with trivial computational cost in
comparison to a direct update by K.

Note that they critically rely on the projected point f(xK) being in K: we only
require finite boundaries such that Pr(X) ⊂ K.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 13 / 73

Outline

x1

x2 Known Boundary K

●

●

●

●

●● xxK

y(1)

y(m)

a

x1

x2 Known Boundary K

●● xxK

a

●● x'x'K
a'b

●

●

●

●

y(1)

y(m)

The single known boundary case. Left panel: the points required for the EK [f(x)] and VarK [f(x)] calculation.
x is the point we wish to emulate at, xK its orthogonal projection onto the known boundary K at distance a.
Right panel: the points required for the CovK [f(x), f(x′)] calculation. x and x′ are points we wish to update
the covariance at, while xK and x′K are their orthogonal projection onto the known boundary K, at distances a
and a′ respectively. In both panels, the y(i) represent a large number of points for which we can evaluate
f(y(i)) analytically (or at least very quickly).

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 14 / 73

How to update by knowledge of a single boundary 4

For sequential emulation we also need the covariances:

CovK [f(x), f(x′)] = Cov[f(x), f(x′)]− Cov[f(x),K]Var[K]−1Cov[K, f(x′)]

= Cov[f(x), f(x′)]− r1(a)(1, 0, · · · , 0)Cov[K, f(x′)]

= Cov[f(x), f(x′)]− r1(a)Cov[f(xK), f(x′)]

= Cov[f(x), f(x′)]− r1(a)Cov[f(xK), f(x′K)]r1(a′)

= σ2
d∏
i=1

ri(xi − x′i)− r1(a)r1(a′)σ2
d∏
i=1

ri(x
K
i − x′Ki)

= σ2 (r1(a− a′)− r1(a)r1(a′)
)
r−1(xK − x′K)

= σ2R1(a, a′) r−1(xK − x′K)

where we have defined the correlation function of the projection of x and x′ onto K

r−1(xK − x′K) =
d∏
i=2

ri(x
K
i − x′Ki) = Cov[f(xK), f(x′K)]

and defined the ‘updated correlation component’ in the x1 direction as

R1(a, a′) = r1(a− a′)− r1(a)r1(a′)

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 15 / 73

Insights from the single boundary K update

EK [f(x)] = E[f(x)] + r1(a)(f(xK)− E[f(xK)])

VarK [f(x)] = σ2(1− r1(a)2)

CovK [f(x), f(x′)] = σ2R1(a, a′) r−1(xK − x′K)

(a) Sufficiency: we see that for the emulator update f(xK) is sufficient for K. Can use
this to include known boundaries directly in black box GP packages.

(b) The correlation structure is still in product form: therefore, we can update by
further known boundaries either orthogonal to any of the remaining inputs xi, with
i = 2, . . . , d, hence orthogonal to K, or indeed by a second boundary parallel to K.

(c) Intuitive limiting behaviour:

lim
a→0

EK [f(x)] = f(xK), lima→0 VarK [f(x)] = 0,

lim
a→∞

EK [f(x)] = E[f(x)], lima→∞VarK [f(x)] = Var[f(x)],

lim
a→0

CovK [f(x), f(x′)] = lim
a′→0

CovK [f(x), f(x′)] = 0

lim
a,a′→∞

CovK [f(x), f(x′)] = σ2r(x− x′) = Cov[f(x), f(x′)], a− a′ finite

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 16 / 73

Insights from the single boundary K update

EK [f(x)] = E[f(x)] + r1(a)(f(xK)− E[f(xK)])

VarK [f(x)] = σ2(1− r1(a)2)

CovK [f(x), f(x′)] = σ2R1(a, a′) r−1(xK − x′K)

(a) Sufficiency: we see that for the emulator update f(xK) is sufficient for K. Can use
this to include known boundaries directly in black box GP packages.

(b) The correlation structure is still in product form: therefore, we can update by
further known boundaries either orthogonal to any of the remaining inputs xi, with
i = 2, . . . , d, hence orthogonal to K, or indeed by a second boundary parallel to K.

(c) Intuitive limiting behaviour:

lim
a→0

EK [f(x)] = f(xK), lima→0 VarK [f(x)] = 0,

lim
a→∞

EK [f(x)] = E[f(x)], lima→∞VarK [f(x)] = Var[f(x)],

lim
a→0

CovK [f(x), f(x′)] = lim
a′→0

CovK [f(x), f(x′)] = 0

lim
a,a′→∞

CovK [f(x), f(x′)] = σ2r(x− x′) = Cov[f(x), f(x′)], a− a′ finite

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 16 / 73

Insights from the single boundary K update

EK [f(x)] = E[f(x)] + r1(a)(f(xK)− E[f(xK)])

VarK [f(x)] = σ2(1− r1(a)2)

CovK [f(x), f(x′)] = σ2R1(a, a′) r−1(xK − x′K)

(a) Sufficiency: we see that for the emulator update f(xK) is sufficient for K. Can use
this to include known boundaries directly in black box GP packages.

(b) The correlation structure is still in product form: therefore, we can update by
further known boundaries either orthogonal to any of the remaining inputs xi, with
i = 2, . . . , d, hence orthogonal to K, or indeed by a second boundary parallel to K.

(c) Intuitive limiting behaviour:

lim
a→0

EK [f(x)] = f(xK), lima→0 VarK [f(x)] = 0,

lim
a→∞

EK [f(x)] = E[f(x)], lima→∞VarK [f(x)] = Var[f(x)],

lim
a→0

CovK [f(x), f(x′)] = lim
a′→0

CovK [f(x), f(x′)] = 0

lim
a,a′→∞

CovK [f(x), f(x′)] = σ2r(x− x′) = Cov[f(x), f(x′)], a− a′ finite

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 16 / 73

Application to 2-dimensional Model

Consider the problem of emulating the 2-dimensional function

f(x) = − sin (2πx2) + 0.9 sin (2π(1− x1)(1− x2))

defined over the region X given by 0 < x1 < 1, 0 < x2 < 1, where we assume a
known boundary K at x1 = 0, and hence have that

f(xK) = f(0, x2) = −1.9 sin (2πx2)

Using a prior expectation E[f(x)] = 0, and a product Gaussian covariance
structure with parameters θ = 0.4 and σ = 1, we have

EK [f(x)] = −1.9 exp{−x21/θ2} sin(2πx2)

VarK [f(x)] = 1− exp{−2x21/θ
2}

We can assess the emulator behaviour using simple emulator diagnostics over X
of the form of the standardised values SK(x) = (EK [f(x)]− f(x))/

√
VarK [f(x)].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 17 / 73

Application to 2-dimensional Model

Consider the problem of emulating the 2-dimensional function

f(x) = − sin (2πx2) + 0.9 sin (2π(1− x1)(1− x2))

defined over the region X given by 0 < x1 < 1, 0 < x2 < 1, where we assume a
known boundary K at x1 = 0, and hence have that

f(xK) = f(0, x2) = −1.9 sin (2πx2)

Using a prior expectation E[f(x)] = 0, and a product Gaussian covariance
structure with parameters θ = 0.4 and σ = 1, we have

EK [f(x)] = −1.9 exp{−x21/θ2} sin(2πx2)

VarK [f(x)] = 1− exp{−2x21/θ
2}

We can assess the emulator behaviour using simple emulator diagnostics over X
of the form of the standardised values SK(x) = (EK [f(x)]− f(x))/

√
VarK [f(x)].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 17 / 73

Application to 2-dimensional Model

Consider the problem of emulating the 2-dimensional function

f(x) = − sin (2πx2) + 0.9 sin (2π(1− x1)(1− x2))

defined over the region X given by 0 < x1 < 1, 0 < x2 < 1, where we assume a
known boundary K at x1 = 0, and hence have that

f(xK) = f(0, x2) = −1.9 sin (2πx2)

Using a prior expectation E[f(x)] = 0, and a product Gaussian covariance
structure with parameters θ = 0.4 and σ = 1, we have

EK [f(x)] = −1.9 exp{−x21/θ2} sin(2πx2)

VarK [f(x)] = 1− exp{−2x21/θ
2}

We can assess the emulator behaviour using simple emulator diagnostics over X
of the form of the standardised values SK(x) = (EK [f(x)]− f(x))/

√
VarK [f(x)].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 17 / 73

Updating by a single known boundary K at x1 = 0

The true 2-dimensional function f(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 18 / 73

Updating by a single known boundary K at x1 = 0

The emulator expectation EK [f(x)]

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 19 / 73

Updating by a single known boundary K at x1 = 0

The emulator prior stan. dev.
√

Var[f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 20 / 73

Updating by a single known boundary K at x1 = 0

The emulator stan. dev.
√

VarK [f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 21 / 73

Updating by a single known boundary K at x1 = 0

Emulator diagnostics SK(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 22 / 73

Updating by two known boundaries: perpendicular or parallel

x1

x2 Known Boundary K

Known Boundary L●●

●

xxK

xL

a
b

●●

●

x'x'K

x'L

a'

b'

●

●

●

●

y(1)

y(m)

● ● ● ●

z(1) z(m)
x1

x2 Known Boundary K

Known Boundary L

●● ●
x

xK xL

a b

●● ●
x'

x'K x'L
a' b'

●

●

●

●

y(1)

y(m)

●

●

●

●

z(1)

z(m)

Left panel: two perpendicular known boundaries. Right panel: two parallel known boundaries. In both cases x
and x′ are the points of interest for the emulation calculation, while xK and x′K are their orthogonal projection
onto the known boundary K, and xL and x′L their orthogonal projection onto the known boundary L. The y(i)

and z(i) represent a large number of points on the boundaries K and L respectively for which we can evaluate
f(y(i)) and f(z(i)) analytically.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 23 / 73

Updating by Two Perpendicular Known Boundaries

We can update with respect to a second boundary L, perpendicular to K,
containing points xL, z(1), . . . , z(m) and vector of model evaluations L:

L =
(
f(xL), f(z(1)), . . . , f(z(m))

)T
,

An analogous proof to that seen before, now updated by K, gives

CovK [f(xL), L]VarK [L]−1 = (1, 0, · · · , 0)

while as the product correlation structure is unperturbed by the K update, we have

CovK [f(x), L] = r2(b) CovK [f(xL), L]

Hence, for example, the emulator expectation updated by L ∪K is found to be

EL∪K [f(x)] = EK [f(x)] + r2(b)(1, 0, · · · , 0)(L− EK [L])

= EK [f(x)] + r2(b)(f(xL)− EK [f(xL)])

= E[f(x)] + r1(a)(f(xK)− E[f(xK)]) + r2(b)f(xL)

− r2(b)(E[f(xL)] + r1(a)(f(xLK)− E[f(xLK)]))

= E[f(x)] + r1(a)∆f(xK) + r2(b)∆f(xL)− r1(a)r2(b)∆f(xLK)

with ∆f(.) ≡ f(.)− E[f(.)]. Parallel boundary case a little trickier.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 24 / 73

Emulators updated by two perpendicular boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The true 2-dimensional function f(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 25 / 73

Emulators updated by two perpendicular boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The emulator expectation EL∪K [f(x)]

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 26 / 73

Emulators updated by two perpendicular boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The emulator prior stan. dev.
√

Var[f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 27 / 73

Emulators updated by two perpendicular boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The emulator stan. dev. with a single boundary
√

VarK [f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 28 / 73

Emulators updated by two perpendicular boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The emulator stan. dev.
√

VarL∪K [f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 29 / 73

Emulators updated by two perpendicular boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

Emulator diagnostics with a single boundary SK(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 30 / 73

Emulators updated by two perpendicular boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

Emulator diagnostics SL∪K(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 31 / 73

Emulators updated by two parallel boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The true 2-dimensional function f(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 32 / 73

Emulators updated by two parallel boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The emulator expectation EL∪K [f(x)]

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 33 / 73

Emulators updated by two parallel boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The emulator prior stan. dev.
√

Var[f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 34 / 73

Emulators updated by two parallel boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The emulator stan. dev. with a single boundary
√

VarK [f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 35 / 73

Emulators updated by two parallel boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The emulator stan. dev.
√

VarL∪K [f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 36 / 73

Emulators updated by two parallel boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

Emulator diagnostics with a single boundary SK(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 37 / 73

Emulators updated by two parallel boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

Emulator diagnostics SL∪K(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 38 / 73

Summary of Analytic Results

Updating by one boundaryK, withR1(a, a′) = r1(a−a′)−r1(a)r1(a′) and ∆f(.) ≡ f(.)−E[f(.)]:

EK [f(x)] = E[f(x)] + r1(a)∆f(x
K

)

CovK [f(x), f(x
′
)] = σ

2
R1(a, a

′
) r−1(x

K − x′K)

VarK [f(x)] = σ
2
(1− r1(a)

2
)

When updating by two perpendicular boundaries K and L:

EL∪K [f(x)] = E[f(x)] + r1(a)∆f(x
K

) + r2(b)∆f(x
L

)− r1(a)r2(b)∆f(x
LK

)

CovL∪K [f(x), f(x
′
)] = σ

2
R1(a, a

′
)R2(b, b

′
) r−1,−2(x

LK − x′LK)

VarL∪K [f(x)] = σ
2
(1− r21(a))(1− r22(b))

When updating by two parallel boundaries K and L, a distance c = a+ b apart:

EL∪K [f(x)] = E[f(x)] +

[
r1(a)− r1(b)r1(c)

1− r21(c)

]
∆f(x

K
) +

[
r1(b)− r1(a)r1(c)

1− r21(c)

]
∆f(x

L
)

CovL∪K [f(x), f(x
′
)] = σ

2 r−1(xK − x′K)

1− r21(c)

{
r1(a− a′)(1− r21(c))− r1(a)r1(a

′
)− r1(b)r1(b

′
)

+ r1(c)
[
r1(a)r1(b

′
) + r1(b)r1(a

′
)
]}

VarL∪K [f(x)] = σ
2 1

1− r21(c)

{
1− r21(c)− r21(a)− r21(b) + 2r1(c)r1(a)r1(b)

}
Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 39 / 73

Aside: Continuous Known Boundaries

Above we used a slightly artificial discrete and finite set of m known points on
each boundary, which only requires a standard Bayes linear update.

Here we generalise to a more natural continuum of known points
K = {f(y) : y ∈ K} on a continuous boundary K, which requires a generalised
Bayes linear update.

The adjusted expectation changes from the matrix equation,

EK [f(x)] = E[f(x)] + Cov[f(x),K]Var[K]−1(K − E[K])

to the integral equation

EK [f(x)] = E[f(x)] +

∫
y∈K

∫
y′∈K

Cov[f(x), f(y)] s(y, y′) (f(y′)− E[f(y′)])dydy′

Here s(x, x′) represents the infinite dimensional generalisation of Var[K]−1, and
satisfies the equivalent inverse property:∫

y′∈K
Cov[f(y), f(y′)]s(y′, y′′) dy′ = δ(y − y′′), for y, y′′ ∈ K

where δ(y − y′′) is the Dirac delta function, the generalisation of the identity matrix.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 40 / 73

Aside: Continuous Known Boundaries

The derivations then take a similar structure to before. We have for y ∈ K that

Cov[f(x), f(y)] = r1(a) Cov[f(xK), f(y)],

which on substitution into the generalised Bayes linear update gives

EK [f(x)] = E[f(x)] +

∫
y∈K

∫
y′∈K

r1(a) Cov[f(xK), f(y)] s(y, y′) (f(y′)− E[f(y′)])dydy′

= E[f(x)] + r1(a)

∫
y′∈K

δ(xK − y′) (f(y′)− E[f(y′)])dy′

= E[f(x)] + r1(a) (f(xK)− E[f(xK)])

Other results for VarK [f(x)] and CovK [f(x), f(x′)] are derived similarly, as are
those for two boundaries.

(End Aside!)

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 41 / 73

Updating by further model evaluations (the real point)

Take the single boundary K case. As we have analytic expressions for EK [f(x)],
VarK [f(x)] and CovK [f(x), f(x′)] we are now easily able to include additional
simulator evaluations into the emulation process.

To do this, we perform n (expensive) evaluations, D, of the full simulator across X ,
and use these to supplement the evaluations, K, available on the boundary.

We want to update the emulator by the union of the evaluations D and K, that is to
find ED∪K [f(x)], VarD∪K [f(x)] and CovD∪K [f(x), f(x′)]. This can be achieved
via a sequential Bayes Linear update:

ED∪K [f(x)] = EK [f(x)] + CovK [f(x), D]VarK [D]−1(D − EK [D])

VarD∪K [f(x)] = VarK [f(x)] − CovK [f(x), D]VarK [D]−1CovK [D, f(x)]

CovD∪K [f(x), f(x′)] = CovK [f(x), f(x′)] − CovK [f(x), D]VarK [D]−1CovK [D, f(x′)]

As typically n is small due to the relative expense of evaluating the full simulator,
these calculations will remain tractable, as VarK [D]−1 will be feasible for modest
values of n.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 42 / 73

Updating by further model evaluations (the real point)

Take the single boundary K case. As we have analytic expressions for EK [f(x)],
VarK [f(x)] and CovK [f(x), f(x′)] we are now easily able to include additional
simulator evaluations into the emulation process.

To do this, we perform n (expensive) evaluations, D, of the full simulator across X ,
and use these to supplement the evaluations, K, available on the boundary.

We want to update the emulator by the union of the evaluations D and K, that is to
find ED∪K [f(x)], VarD∪K [f(x)] and CovD∪K [f(x), f(x′)]. This can be achieved
via a sequential Bayes Linear update:

ED∪K [f(x)] = EK [f(x)] + CovK [f(x), D]VarK [D]−1(D − EK [D])

VarD∪K [f(x)] = VarK [f(x)] − CovK [f(x), D]VarK [D]−1CovK [D, f(x)]

CovD∪K [f(x), f(x′)] = CovK [f(x), f(x′)] − CovK [f(x), D]VarK [D]−1CovK [D, f(x′)]

As typically n is small due to the relative expense of evaluating the full simulator,
these calculations will remain tractable, as VarK [D]−1 will be feasible for modest
values of n.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 42 / 73

Updating by further model evaluations (the real point)

Take the single boundary K case. As we have analytic expressions for EK [f(x)],
VarK [f(x)] and CovK [f(x), f(x′)] we are now easily able to include additional
simulator evaluations into the emulation process.

To do this, we perform n (expensive) evaluations, D, of the full simulator across X ,
and use these to supplement the evaluations, K, available on the boundary.

We want to update the emulator by the union of the evaluations D and K, that is to
find ED∪K [f(x)], VarD∪K [f(x)] and CovD∪K [f(x), f(x′)]. This can be achieved
via a sequential Bayes Linear update:

ED∪K [f(x)] = EK [f(x)] + CovK [f(x), D]VarK [D]−1(D − EK [D])

VarD∪K [f(x)] = VarK [f(x)] − CovK [f(x), D]VarK [D]−1CovK [D, f(x)]

CovD∪K [f(x), f(x′)] = CovK [f(x), f(x′)] − CovK [f(x), D]VarK [D]−1CovK [D, f(x′)]

As typically n is small due to the relative expense of evaluating the full simulator,
these calculations will remain tractable, as VarK [D]−1 will be feasible for modest
values of n.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 42 / 73

Updating by further model evaluations (the real point)

Take the single boundary K case. As we have analytic expressions for EK [f(x)],
VarK [f(x)] and CovK [f(x), f(x′)] we are now easily able to include additional
simulator evaluations into the emulation process.

To do this, we perform n (expensive) evaluations, D, of the full simulator across X ,
and use these to supplement the evaluations, K, available on the boundary.

We want to update the emulator by the union of the evaluations D and K, that is to
find ED∪K [f(x)], VarD∪K [f(x)] and CovD∪K [f(x), f(x′)]. This can be achieved
via a sequential Bayes Linear update:

ED∪K [f(x)] = EK [f(x)] + CovK [f(x), D]VarK [D]−1(D − EK [D])

VarD∪K [f(x)] = VarK [f(x)] − CovK [f(x), D]VarK [D]−1CovK [D, f(x)]

CovD∪K [f(x), f(x′)] = CovK [f(x), f(x′)] − CovK [f(x), D]VarK [D]−1CovK [D, f(x′)]

As typically n is small due to the relative expense of evaluating the full simulator,
these calculations will remain tractable, as VarK [D]−1 will be feasible for modest
values of n.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 42 / 73

Design of Known Boundary Emulation Experiments

The inclusion of known boundaries such as K will of course increase the accuracy
of the emulator, for negligible computational cost.

The extent of this increase depends upon the dimension of K and on the specifics
of the prior correlation structure.

In addition, if we are aware of the boundaries in advance, we can design a more
informative set of runs D that exploit the known boundaries.

We can examine the emulator variance VarD∪K [f(x)] to choose D.

V-optimality: An example of this is to choose a design xD that minimises

c(xD) = trace(VarD∪K [f(XG)])

where XG is a large set of points covering X .

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 43 / 73

Design of Known Boundary Emulation Experiments

The inclusion of known boundaries such as K will of course increase the accuracy
of the emulator, for negligible computational cost.

The extent of this increase depends upon the dimension of K and on the specifics
of the prior correlation structure.

In addition, if we are aware of the boundaries in advance, we can design a more
informative set of runs D that exploit the known boundaries.

We can examine the emulator variance VarD∪K [f(x)] to choose D.

V-optimality: An example of this is to choose a design xD that minimises

c(xD) = trace(VarD∪K [f(XG)])

where XG is a large set of points covering X .

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 43 / 73

Designing runs in the presence of a known boundary K.

Single boundary, with K : x1 = 0

The emulator stan. dev. with a single boundary
√

VarK [f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 44 / 73

Designing runs in the presence of a known boundary K.

Single boundary, with K : x1 = 0

The emulator stan. dev.
√

VarD∪K [f(x)], with D a 10 point V-optimal design.

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 45 / 73

Designing runs in the presence of a known boundary K.

Single boundary, with K : x1 = 0

The emulator stan. dev.
√

VarD∪K [f(x)], with D a 10 point V-optimal design.

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 46 / 73

Designing runs in the presence of a known boundary K.

Single boundary, with K : x1 = 0

The true 2-dimensional function f(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 47 / 73

Designing runs in the presence of a known boundary K.

Single boundary, with K : x1 = 0

Emulator diagnostics with a single boundary SD∪K(x)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 48 / 73

Designing runs in the presence of known boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The emulator stan. dev.
√

VarL∪K [f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 49 / 73

Designing runs in the presence of known boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The emulator stan. dev.
√

VarD∪L∪K [f(x)], with D a 10 pt V-optimal design

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 50 / 73

Designing runs in the presence of known boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The emulator expectation ED∪L∪K [f(x)], with D a 10 pt V-optimal design

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 51 / 73

Designing runs in the presence of known boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

The true 2-dimensional function f(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 52 / 73

Designing runs in the presence of known boundaries K and L.

Perpendicular boundaries, with K : x1 = 0 and L : x2 = 0

Emulator diagnostics SD∪L∪K(x)

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 53 / 73

Designing runs in the presence of known boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The emulator stan. dev.
√

VarL∪K [f(x)]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 54 / 73

Designing runs in the presence of known boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The emulator stan. dev.
√

VarD∪L∪K [f(x)], with D a 10 pt V-optimal design

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 55 / 73

Designing runs in the presence of known boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The emulator expectation ED∪L∪K [f(x)], with D a 10 pt V-optimal design

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 56 / 73

Designing runs in the presence of known boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

The true 2-dimensional function f(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 57 / 73

Designing runs in the presence of known boundaries K and L.

Parallel boundaries, with K : x1 = 0 and L : x1 = 1

Emulator diagnostics SD∪L∪K(x)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

x1

x 2

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 58 / 73

Application to a Systems Biology Model of Arabidopsis

Small flowering plant related to cabbage and mustard.

One of the model organisms used for studying plant biology and the first plant to
have its entire genome sequenced.

Changes in it are easily observed, making it very useful.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 59 / 73

Measurements of root hormone level.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 60 / 73

Root Hormonal Crosstalk Reaction Network Model of Arabidopsis
Thaliana

Liu et. al. developed a kinetic model of hormonal crosstalk in Arabidopsis,

Model describes the function of POLARIS (PLS) peptide in auxin biosysthesis.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 61 / 73

d[Auxin]

dt
=

k1a

1 +
[X]

k1

+ k2 + k2a
[ET]

1 +
[CK]

k2b

[PLSp]

k2c + [PLSp]

d[Re]

dt
= k11[Re

∗
][ET] − (k10 + k10a[PLSp])[Re]

+
VIAA[IAA]

KmIAA + [IAA]

d[Re∗]

dt
= − k11[Re

∗
][ET] + (k10 + k10a[PLSp])[Re]

−
(
k3 +

k3a[PIN1pm]

k3auxin + [Auxin]

)
[Auxin]

d[CTR1]

dt
= − k14[Re

∗
][CTR1] + k15[CTR1

∗
]

d[X]

dt
= k16 − k16a[CTR1

∗
] − k17[X]

d[CTR1∗]

dt
= k14[Re

∗
][CTR1] − k15[CTR1

∗
]

d[PLSp]

dt
= k8[PLSm] − k9[PLSp]

d[PIN1m]

dt
=

k20a

k20b + [CK]
[X]

[Auxin]

k20c + [Auxin]

d[Ra]

dt
= − k4[Auxin][Ra] + k5[Ra

∗
] − k1v21[PIN1m]

d[Ra∗]

dt
= k4[Auxin][Ra] − k5[Ra

∗
]

d[PIN1pi]

dt
= k22a[PIN1m] − k1v23[PIN1pi]

d[CK]

dt
=

k18a

1 +
[Auxin]

k18

− k19[CK] − k1v24[PIN1pi] +
k25a[PIN1pm]

1 +
[Auxin]

k25b

+
VCK [cytokinin]

KmCK + [cytokinin]

d[PIN1pm]

dt
= k1v24[PIN1pi] −

k25a[PIN1pm]

1 +
[Auxin]

k25b

d[ET]

dt
= k12 + k12a[Auxin][CK] − k13[ET]

d[IAA]

dt
= 0

+
VACC [ACC]

KmACC + [ACC]

d[cytokinin]

dt
= 0

d[PLSm]

dt
=

k6[Ra∗]

1 +
[ET]

k6a

− k7[PLSm]
d[ACC]

dt
= 0

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 62 / 73

Arabidopsis.

Results of emulating, without training points, a 2-dimensional k6 (x-axes) by k8 (y-axes) slice of the
6-dimensional input space, with each of the inputs {k4, k6a, k7, k9} set to the mid-values of their square root
ranges. The first row shows the results when using prior emulator beliefs only, the second row shows the results
when updating by the boundary K : k6 = 0 only, and the third row shows the results when updating using both
boundaries K : k6 = 0 and L : k8 = 0. Each column from left to right shows emulator mean, standard
deviation and diagnostics respectively.Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 63 / 73

Arabidopsis.

Results of emulating, with training points, a 2-dimensional k6 (x-axes) by k8 (y-axes) slice of the 6-dimensional
input space, with each of the inputs {k4, k6a, k7, k9} set to the mid-values of their square root ranges. The first
row shows the results when updating by the training points only, the second row shows the results when
updating by the training points and the known boundary K : k6 = 0, and the third row shows the results when
updating by the training points and the two known boundaries K : k6 = 0 and L : k8 = 0. Each column from
left to right shows emulator means, variances and diagnostics respectively.Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 64 / 73

Arabidopsis.

θ Known Boundaries Maximin LH Warped Maximin LH

0.7 Without 0.9247 0.9489
With 0.6763 0.5886

1.2 Without 0.4427 0.6601
With 0.2986 0.2530

Table: A table of RMSEs of the 2000 diagnostic points using emulators constructed with and without both the
known boundaries K and L for a maximin Latin hypercube design and the warped version of this design, for two
choices of correlation length θ. The numbers in bold correspond to the preferred strategy, for the given
knowledge of the boundaries.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 65 / 73

Arabidopsis.

θ
Known Iterative Warped Iter. V-Opt.

Boundaries V-Opt. Iter. V-Opt. with KBs

0.7 Without 0.8166 0.9013 0.9700
With 0.5815 0.5091 0.5101

1.2 Without 0.4476 0.6687 0.9028
With 0.2830 0.2340 0.2414

Table: A table of RMSEs of the 2000 diagnostic points using emulators constructed with and without the known
boundaries K and L for three designs, namely a standard iterative V-optimal design without the known
boundaries, the warped version of this design, and an iterative V-optimal design which takes account of the
known boundaries.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 66 / 73

Extensions: Multiple Boundaries of Differing Dimension

In the systems biology example there were actually multiple known boundaries of
differing dimension.

This approach can be used to incorporate multiple parallel and perpendicular
boundaries of differing dimension as long as they satisfy certain rules.

For example,

Theorem: The expectation and covariance of f(x), sequentially adjusted by
multiple perpendicular boundaries K1, ...,Kh, are given by:

EK1∪···∪Kh [f(x)] = E[f(x)] +
h∑
i=1

(−1)i+1
∑

A⊂1:h,|A|=i

∏
j∈A

rkj−1+1:kj (a)∆f(xKA)

CovK1∪···∪Kh [f(x), f(x′)] =
h∏
j=1

Rkj−1+1:kj (a, a′) rkh+1:p(x− x′)

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 67 / 73

Extensions: Multiple Boundaries of Differing Dimension

Theorem: The expectation of f(x) adjusted by multiple parallel boundaries
K1, ..,Kh is given by:

EK1∪···∪Kh [f(x)]

= E[f(x)] + r1:k1(aK1)∆f(xK1)

+

h∑
γ=2

R
(γ−1)
k1,...,kγ−1

(aK1 , ..., aKγ−1 ,K1Kγ , ...,Kγ−1Kγ)

R
(γ−1)
k1,...,kγ−1

(K1Kγ , ...,Kγ−1Kγ ,K1Kγ , ...,Kγ−1Kγ)
rkγ−1+1:kγ (aKγ)

∗
(

∆f(xKγ) +

γ∑
j=2

∑
b⊂1:γ,b1<...<bj=γ

(−1)j+1

j−1∏
l=1

R
(bl−1)
k1,...,kbl−1

(K1Kbj , ...,Kbl−1Kbj ,K1Kbl , ...,Kbl−1Kbl)

R
(bl−1)
k1,...,kbl−1

(K1Kbl , ...,Kbl−1Kbl ,K1Kbl , ...,Kbl−1Kbl)

∗ rkbl−1:kbl
(KblKbl+1) ∆f(x

Kbj
...Kb1)

)

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 68 / 73

Extensions: Multiple Boundaries of Differing Dimension

f(x)

µ(x)

ν(x)

s(x)

x2 = 0

x1

x2

x3

x2 = − π 8

x1

x2

x3

x1 = − π

x1

x2

x3

−2
−1
0
1
2

−2
−1
0
1
2

0.0

0.5

1.0

1.5

2.0

−4

−2

0

2

4

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 69 / 73

Extensions: Multiple Boundaries of Differing Dimension

f(x)

µ(x)

ν(x)

s(x)

x2 = 0

x1

x2

x3

x2 = − π 8

x1

x2

x3

x1 = − π

x1

x2

x3

−2
−1
0
1
2

−2
−1
0
1
2

0.0

0.5

1.0

1.5

2.0

−4

−2

0

2

4

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 70 / 73

Conclusions

We should seek to identify any known boundaries/Dirichlet boundary conditions
for the model f(x) over the input space X .

If they exist, and are of appropriate form, we can incorporate them into the
emulator for negligible computational cost.

If we know about them in advance we can design sets of runs accordingly.

d− k dimensional boundaries can be highly informative compared to
zero-dimensional runs.

Vernon, I. R., Jackson, S. E. & Cumming, J. A. (2019). “Known Boundary Emulation of Complex
Computer Models". SIAM/ASA Journal on Uncertainty Quantification, 7 (3), arXiv:1801.03184v2
[stat.ME].

Jackson, Samuel E. & Vernon, Ian (2023). “Efficient Emulation of Computer Models Utilising
Multiple Known Boundaries of Differing Dimension". Bayesian Analysis 18(1): 165-191,
arXiv:1910.08846v2 [stat.ME].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 71 / 73

Conclusions

We should seek to identify any known boundaries/Dirichlet boundary conditions
for the model f(x) over the input space X .

If they exist, and are of appropriate form, we can incorporate them into the
emulator for negligible computational cost.

If we know about them in advance we can design sets of runs accordingly.

d− k dimensional boundaries can be highly informative compared to
zero-dimensional runs.

Vernon, I. R., Jackson, S. E. & Cumming, J. A. (2019). “Known Boundary Emulation of Complex
Computer Models". SIAM/ASA Journal on Uncertainty Quantification, 7 (3), arXiv:1801.03184v2
[stat.ME].

Jackson, Samuel E. & Vernon, Ian (2023). “Efficient Emulation of Computer Models Utilising
Multiple Known Boundaries of Differing Dimension". Bayesian Analysis 18(1): 165-191,
arXiv:1910.08846v2 [stat.ME].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 71 / 73

Conclusions

We should seek to identify any known boundaries/Dirichlet boundary conditions
for the model f(x) over the input space X .

If they exist, and are of appropriate form, we can incorporate them into the
emulator for negligible computational cost.

If we know about them in advance we can design sets of runs accordingly.

d− k dimensional boundaries can be highly informative compared to
zero-dimensional runs.

Vernon, I. R., Jackson, S. E. & Cumming, J. A. (2019). “Known Boundary Emulation of Complex
Computer Models". SIAM/ASA Journal on Uncertainty Quantification, 7 (3), arXiv:1801.03184v2
[stat.ME].

Jackson, Samuel E. & Vernon, Ian (2023). “Efficient Emulation of Computer Models Utilising
Multiple Known Boundaries of Differing Dimension". Bayesian Analysis 18(1): 165-191,
arXiv:1910.08846v2 [stat.ME].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 71 / 73

Conclusions

We should seek to identify any known boundaries/Dirichlet boundary conditions
for the model f(x) over the input space X .

If they exist, and are of appropriate form, we can incorporate them into the
emulator for negligible computational cost.

If we know about them in advance we can design sets of runs accordingly.

d− k dimensional boundaries can be highly informative compared to
zero-dimensional runs.

Vernon, I. R., Jackson, S. E. & Cumming, J. A. (2019). “Known Boundary Emulation of Complex
Computer Models". SIAM/ASA Journal on Uncertainty Quantification, 7 (3), arXiv:1801.03184v2
[stat.ME].

Jackson, Samuel E. & Vernon, Ian (2023). “Efficient Emulation of Computer Models Utilising
Multiple Known Boundaries of Differing Dimension". Bayesian Analysis 18(1): 165-191,
arXiv:1910.08846v2 [stat.ME].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 71 / 73

Conclusions

We should seek to identify any known boundaries/Dirichlet boundary conditions
for the model f(x) over the input space X .

If they exist, and are of appropriate form, we can incorporate them into the
emulator for negligible computational cost.

If we know about them in advance we can design sets of runs accordingly.

d− k dimensional boundaries can be highly informative compared to
zero-dimensional runs.

Vernon, I. R., Jackson, S. E. & Cumming, J. A. (2019). “Known Boundary Emulation of Complex
Computer Models". SIAM/ASA Journal on Uncertainty Quantification, 7 (3), arXiv:1801.03184v2
[stat.ME].

Jackson, Samuel E. & Vernon, Ian (2023). “Efficient Emulation of Computer Models Utilising
Multiple Known Boundaries of Differing Dimension". Bayesian Analysis 18(1): 165-191,
arXiv:1910.08846v2 [stat.ME].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 71 / 73

Conclusions

We should seek to identify any known boundaries/Dirichlet boundary conditions
for the model f(x) over the input space X .

If they exist, and are of appropriate form, we can incorporate them into the
emulator for negligible computational cost.

If we know about them in advance we can design sets of runs accordingly.

d− k dimensional boundaries can be highly informative compared to
zero-dimensional runs.

Vernon, I. R., Jackson, S. E. & Cumming, J. A. (2019). “Known Boundary Emulation of Complex
Computer Models". SIAM/ASA Journal on Uncertainty Quantification, 7 (3), arXiv:1801.03184v2
[stat.ME].

Jackson, Samuel E. & Vernon, Ian (2023). “Efficient Emulation of Computer Models Utilising
Multiple Known Boundaries of Differing Dimension". Bayesian Analysis 18(1): 165-191,
arXiv:1910.08846v2 [stat.ME].

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 71 / 73

References

Vernon, I, Goldstein, M, Rowe, J, Liu, J and Lindsey, K, (2018) "Bayesian uncertainty analysis for complex
systems biology models: emulation, global parameter searches and evaluation of gene functions.", BMC
Systems Biology 12: 1, arXiv:1607.06358v1 [q-bio.MN].

Danny Scarponi, Andrew Iskauskas, Rebecca A. Clark, Ian Vernon, Trevelyan J. McKinley, Michael Goldstein,
Christinah Mukandavire, Arminder Deol, Chathika Weerasuriya, Roel Bakker, Richard G. White, Nicky
McCreesh, Demonstrating multi-country calibration of a tuberculosis model using new history matching and
emulation package - hmer, Epidemics 43 (2023) 100678.

Hu, Baishan, Jaing, Weiguang, Miyagi, Takayuki, Sun, Zhonghao, Ekstrom, Andreas, Forssen, Christian,
Hagen, Gaute, Holt, Jason D., Papenbrock, Thomas, Stroberg, S. Ragnar & Vernon, Ian (2022). Ab initio
predictions link the neutron skin of 208Pb to nuclear forces. Nature Physics 18(10): 1196–1200.

Vernon, I., Owen, J., Aylett-Bullock, J., Cuestra-Lazaro, C., Frawley, J., Quera-Bofarull, A., Sedgewick, A., Shi,
D., Truong, H., Turner, M., Walker, J., Caulfield, T., Fong, K. & Krauss, F. (2022). Bayesian Emulation and
History Matching of JUNE. Philosophical Transactions A 380(2233): 20220039.

Rodrigues, L.F.S., Vernon, I., Bower, R.G.: Constraints to galaxy formation models using the galaxy stellar mass
function, stronger feedback during starbursts?, MNRAS (2017) 466 (2): 2418-2435. arXiv:1609.06922v3

Vernon, I.; Goldstein, M.; Bower, R. G.; Galaxy Formation: “Bayesian History Matching for the Observable
Universe". Statistical Science 29 (2014), no. 1, 81–90.

Vernon, I., Goldstein, M., and Bower, R. G. (2010), “Galaxy Formation: a Bayesian Uncertainty Analysis",
Bayesian Analysis, 5(4): 619–670, with rejoinder. Invited discussion paper. Awarded Mitchell Prize.

Bower, R., Vernon, I., Goldstein, M., et al. (2010), “The Parameter Space of Galaxy Formation",
Mon.Not.Roy.Astron.Soc., 407: 2017–2045.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 72 / 73

References

Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T.J., Oakley, J.E., Nsubuga, R., Goldstein, M., White, R.G.:
Bayesian history matching of complex infectious disease models using emulation: A tutorial and a case study on
HIV in Uganda. PLoS Comput Biol. 11(1), 1003968 (2015)

Andrianakis, I., McCreesh, N., Vernon, I, McKinley, T. J. Oakley, J. E. Nsubuga, R. Goldstein, M. & White, R. G.
(2016). "History matching of a high dimensional individual based HIV transmission model". JUQ 5(1):694-719.

McCreesh, N., Andrianakis, I, Nsubuga, R., Strong, M., Vernon, I., McKinley, T.J. Oakley, J.E., Goldstein, M.,
Hayes, R. & White, R.G. "Universal Test, Treat, and Keep: Improving ART Retention is Key in Cost-effective HIV
Control in Uganda". BMC Infectious Diseases (2017) 17:322

Trevelyan J. McKinley, Ian Vernon, Ioannis Andrianakis, Nicky McCreesh, Jeremy E. Oakley, Rebecca N.
Nsubuga, Michael Goldstein, Richard G. White (2016). "Approximate Bayesian Computation and
simulation-based inference for large-scale stochastic epidemic models". Statistical Science 33(1): 4–18.

Goldstein, M., Seheult, A., Vernon, I.: “Assessing Model Adequacy". In: Wainwright, J., Mulligan, M. (eds.)
Environmental Modelling: Finding Simplicity in Complexity, 2nd edn. John Wiley & Sons, Ltd, Chichester, (2013)

Ferreira, Carla, Vernon, Ian, Caiado, Camila, Formentin, Helena, Avansi, Guilherme, Goldstein, Michael &
Schiozer, Denis (2019). Efficient Selection of Reservoir Model Outputs within an Emulation-Based Bayesian
History Matching Uncertainty Analysis. SPE Journal OTC-29801-MS, 1-34.

Ian Vernon (Durham University) Known Boundary Emulation May 25, 2023 73 / 73

