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GWB

• As described by general relativity, GW are freely propagating
wave solutions to Einstein’s equation, or “ripples” in the
space-time metric.

• GW are expected to be generated by nearly any configuration
of accelerating mass.

• However, due to the weakness of gravity, large masses/high
accelerations (e.g., binary systems of neutron stars) are
required to radiate significant GW.
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GWB

• GWs can be indirectly inferred using precise measurements of
timings of radio pulses from spinning, magnetized neutron
stars (pulsars).
• The pulse times of arrival can be analyzed via models

incorporating the GW component.
• One operational model for the observed pulsar time of

arrivals (TOAs) can be written as

τ = τTM + τDM + τGW + τ other (0.1)

where
τTM: Physical model for TOAs taking into account spin
period, proper motion, binary orbital dynamics, etc.
τDM: Model for time-varying dispersion measure variations.
τGW: Model for any GWs. This includes stochastic sources
that have a unique correlation pattern across multiple
pulsars, etc!
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GWB

• Through some clever manipulation & approximations (cf.
Demorest et al. (2007, 2012)), this leads to the following
model for the pre-fit residuals for a single pulsar:

Y = Aβ + ε.

• Parameters β are estimated by WLS/GLS, giving

β̂ = (A′WA)−1A′WY.

where W is (often) a diagonal matrix with inverse variances
at each epoch (but can be more general).
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GWB

• The post-fit residuals are given by RY, where R is the
projection operator:

R = I−A(A′WA)−1A′W.

• It is easy to check that R is idempotent (and singular).

• Further,
RY = RAβ + Rε = 0 + Rε.

• Thus, we can use the post-fit residuals to investigate the
covariance structure of ε that contains information about the
GWB !!
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GWB

• We write
ε = εgw + εother,

where εgw denotes the part of the noise due to GWB.

• Under an isotropic power law spectrum assumption, the
GWB covariances are of the form:((

Cgw))
ij

= A2
1C

gw(ti − tj)

where

Cgw(·) is the covariance function corresponding to the
spectrum and
A1 is the unknown GW spectrum amplitude at the reference
frequency f0 = 1yr−1 - the parameter of interest!!!
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GWB

• The presence of GW component make the residual series of
different pulsars correlated!!

• For a pair of pulsars (a, b), the noise variables εa and εb can
be written as

εa = εgw
a + εother

a , εb = ε
gw
b + εother

b

where ε
gw
a and ε

gw
b are correlated, but εother

a and

εother
b are NOT!
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The GW component in residuals

• The covariance between the noise variables εa and εb
for a pair of pulsars (a, b) is given by((

Ca,b

))
ij

= A2
1C

gw(ti − tj)ζ(θab)

where

θab = the angular separation between pulsars a and b and
ζ(·) is the Hellings-Downs function !

• Thus, the cross-covariance matrix between εa and εb is
determined by the GW power spectrum.

• Further, in Ca,b, the ONLY unknown parameter is A2
1.
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The GW component in residuals

Q: How do we estimate A1?
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Cadence of TOAs/ residuals

• Here is a plot of the residuals for different pulars showing
their cadence (cf. Demorest et al. (2012)):
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Optimal Statistic

Note the following features:

• The time points are irregularly spaced!

• The number of observations can be/are different for
any two distinct pulsars!

• The coverage is NOT uniform and there are gaps
appearing during 2007 in most of the series!

• The densities and spans of different series can be very
different!

• There is heteroskedsticity (cf. size of the bars) !!
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Optimal Statistic :

• Demorest et al. (2012) defined the following cross-correlation
statistic (cf. eqn (9), p.13):

ρab =

∑
ijkl r

(a)
i (Ctot(a))−ijCjk(a, b)(Ctot(b))−klr

(b)
l∑

ijkl(C
tot(a))−ijCjk(a, b)(Ctot(b))−klCil(a, b)

where

i,j ∈ {1, . . . , Na} and k, l ∈ {1, . . . , Nb}, with Na denoting
the number of TOAs for pulsar a, etc.

r
(a)
i and r

(b)
l are the post-fit timing residuals for pulsars a

and b, respectively.

Ctot(a) is the (estimated) covariance matrix of the post-fit
residuals for pulsar a, and (Ctot(a))− is its generalized inverse!

Cil(a, b) is the (i, l) element of Ra[Ca,b]R
′
b.
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GWB

• It can be shown that for all a, b,

Eρab = A2
1ζ(θab).

• Given a set of pulsars {1, . . . ,m}, we can set up the
regression model:

ρab = A2
1ζ(θab) + εab

for pairs (a, b) ∈ Γ, where Γ = {(a, b) : 1 ≤ a < b ≤ m}.
• This leads to an estimator of A2

1 of the form:

Â2
1 =

∑
(a,b) ζ(θab)ρab∑
(a,b) ζ(θab)2

.

S.N. Lahiri (WUSTL) 13 / 22



Optimal Statistic :

Q: How do we approximate the distribution of Â2
1?
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Bootstrap

• We can use the Bootstrap to approximate the distribution of
Â2

1.

• But what form of Bootstrap is appropriate?

Sampling with replacement / IID Bootstrap ?

Block Bootstrap ?
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Construction of the Blocks for time series

• M = 1 gives the maximum overlapping version

• M > 1 can be used to reduce computational burden
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Issues with the Block Bootstrap

• While this will work with a single time series, it may not be
effective under the present scenario:

the number of pulsars ≈ 37+
and the sample size is only around 500+.

• Thus, - curse of dimensionality will kick in!!

• Time-domain Block Bootstrap does not handle Red Noise
very well (cf. Lahiri (1993)).

• There are also issues with irregularly spaced time-points! (cf.
Lahiri and Zhu (2006)).
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A new Bootstrap method

• Recall that

ρab =

∑
ijkl r

(a)
i (Ctot(a))−ijCjk(a, b)(Ctot(b))−klr

(b)
l∑

ijkl(C
tot(a))−ijCjk(a, b)(Ctot(b))−klC̃il(a, b)

.

• Define

Z(a) ≡ (Z
(a)
1 , . . . , Z

(a)
Na

)′ =
(
Ctot(a)

)−1/2
r(a),

the set of pre-whitened residuals for pulsar a.

• Note that ρab can be written as

ρab =
Na∑
i=1

Nb∑
l=1

wab(i, l)Z
(a)
i Z

(b)
i

for some weights wab(i, l).
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A new Bootstrap method

• Thus, to define the Bootstrap version of

Â2
1 =

∑
(a,b) ζ(θab)ρab∑
(a,b) ζ(θab)2

=
∑
(a,b)

Na∑
i=1

Nb∑
l=1

w̃ab(i, l)Z
(a)
i Z

(b)
i ,

it is enough to be able to generate Bootstrap versions of Z(a)

for all a.

• Note that for each a, the variables Z
(a)
1 , . . . , Z

(a)
Na

are
approximately iid.

• So, we can resample with replacement to generate the
(pre-)Bootstrap sample

Z
◦(a)
1 , . . . , Z

◦(a)
Na

.
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A new Bootstrap method

• Note that this direct resampling only captures the marginal
behavior of each set of residuals.

• It is important to also capture their interactions
(correlations)!

• Thus, the Bootstrap version of {Z(a) : a = 1, . . . ,m} is
defined by  Z∗(a)

· · ·
Z∗(m)

 = Σ1/2

 Z◦(a)

· · ·
Z◦(m)


where Σ is an N ×N matrix (with N = N1 + . . .+Nm)
consisting of m×m block matrices with (a, b)th block :

[Ctot(a)]−1/2Ca,b[C
tot(b)]−1/2, a 6= b.
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A new Bootstrap method

• Now define

[A∗1]
2 =

∑
(a,b)

Na∑
i=1

Nb∑
l=1

w̃ab(i, l)Z
∗(a)
i Z

∗(b)
i .

• We can use the Bootstrap distribution of [A∗1]
2 to

approximate the distribution of Â2
1.

We can use the Monte-Carlo based Bootsrrap quantiles of
[A∗1]

2 to construct CIs for A2
1.

This, in turn, can be used for testing H0 : A1 = 0, etc.
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The END!!!

Thank you !!
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