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GWB

® As described by general relativity, GW are freely propagating
wave solutions to Einstein’s equation, or “ripples” in the
space-time metric.

e GW are expected to be generated by nearly any configuration
of accelerating mass.

e However, due to the weakness of gravity, large masses/high
accelerations (e.g., binary systems of neutron stars) are
required to radiate significant GW.
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GWB

¢ GWs can be indirectly inferred using precise measurements of
timings of radio pulses from spinning, magnetized neutron
stars (pulsars).

® The pulse times of arrival can be analyzed via models
incorporating the GW component.

® One operational model for the observed pulsar time of
arrivals (TOAs) can be written as

T = TTM _|_ TDM _|_ TGW + Tother (01)

where
o 7™ Physical model for TOAs taking into account spin
period, proper motion, binary orbital dynamics, etc.
o 7PM: Model for time-varying dispersion measure variations.
o 76W: Model for any GWs. This includes stochastic sources
that have a unique correlation pattern across multiple
pulsars, etc!
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GWB

e Through some clever manipulation & approximations (cf.
Demorest et al. (2007, 2012)), this leads to the following
model for the pre-fit residuals for a single pulsar:

Y =Ap+e
e Parameters ( are estimated by WLS/GLS, giving
B=(A'WA) 'A'WY.

where W is (often) a diagonal matrix with inverse variances
at each epoch (but can be more general).
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GWB

® The post-fit residuals are given by RY, where R is the
projection operator:

R=I-A(A'WA) 'A'W.

e It is easy to check that R is idempotent (and singular).

¢ Further,
RY = RA5 + Re =0+ Re.

e Thus, we can use the post-fit residuals to investigate the
covariance structure of € that contains information about the

GWB !l
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GWB

o We write

€— 3V ¢ 6other7

where €%V denotes the part of the noise due to GWB.

e Under an isotropic power law spectrum assumption, the
GWRB covariances are of the form:

((CgW))ij - A%ng(ti - tj)

where
o C8Y(.) is the covariance function corresponding to the
spectrum and
o Aj is the unknown GW spectrum amplitude at the reference
frequency fo = lyr~! - the parameter of interest!!!
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® The presence of GW component make the residual series of
different pulsars correlated!!

e For a pair of pulsars (a,b), the noise variables €, and €, can
be written as

€, = €3V + 6aother7 € = egw n e,?ther

where 2" and el;gw are correlated, but €

ebother are NOT!

aother and
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The GW component in residuals

® The covariance between the noise variables €, and ¢,
for a pair of pulsars (a,b) is given by

((Ca7b))ij = ATCEY(t; — t5)¢(6ab)

where

e O, = the angular separation between pulsars a and b and
o ((-) is the Hellings-Downs function !

® Thus, the cross-covariance matrix between €, and €, is
determined by the GW power spectrum.

e Further, in C,;, the ONLY unknown parameter is A7.
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The GW component in residuals

Q: How do we estimate A;?
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Cadence of TOAs/ residuals

® Here is a plot of the residuals for different pulars showing
their cadence (cf. Demorest et al. (2012)):
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Optimal Statistic

Note the following features:

® The time points are irregularly spaced!

¢ The number of observations can be/are different for
any two distinct pulsars!

® The coverage is NOT uniform and there are gaps
appearing during 2007 in most of the series!

® The densities and spans of different series can be very
different!

e There is heteroskedsticity (cf. size of the bars) !!
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Optimal Statistic :

e Demorest et al. (2012) defined the following cross-correlation
statistic (cf. eqn (9), p.13):

oy — S ()5 O, D(CO)
Y ()5 (a,6) (CH0 ) Caa,B)

where

o i,je{l,..., Ny} and k,l € {1,..., Ny}, with N, denoting
the number of TOAs for pulsar a, etc.
(a) (0)

o r;” and r;” are the post-fit timing residuals for pulsars a

and b, respectively.

o C!*@) is the (estimated) covariance matrix of the post-fit
residuals for pulsar a, and (th(a))* is its generalized inverse!

o Cji(a,b) is the (i,1) element of R,[Cgp] Ry
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GWB

e [t can be shown that for all a, b,
Epay, = A%C(‘gab)'

e Given a set of pulsars {1,...,m}, we can set up the
regression model:

Pab = A%C(‘gab) + €ap
for pairs (a,b) € I', where I' = {(a,0) : 1 < a < b < m}.

® This leads to an estimator of A? of the form:

2 (at) $(0a) pas

A2 = .
' Z(a,b) €<0ab)2
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Optimal Statistic :

Q: How do we approximate the distribution of A%?
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Bootstrap

e We can use the Bootstrap to approximate the distribution of
A2
e But what form of Bootstrap is appropriate?
o Sampling with replacement / IID Bootstrap ?
e Block Bootstrap ?

S.N. Lahiri (WUSTL)



Construction of the Blocks for time series

e M =1 gives the maximum overlapping version

e M > 1 can be used to reduce computational burden
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Issues with the Block Bootstrap

e While this will work with a single time series, it may not be
effective under the present scenario:
e the number of pulsars ~ 37+

e and the sample size is only around 500+.

® Thus, - curse of dimensionality will kick in!!

¢ Time-domain Block Bootstrap does not handle Red Noise
very well (cf. Lahiri (1993)).

e There are also issues with irregularly spaced time-points! (cf.

Lahiri and Zhu (2006)).
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A new Bootstrap method

® Recall that

S (O = O (a, b (CHHO) )
> (@)= Cp(a, b) (Cto®) 1 Cia(a, b)

Pab =

® Define
Z(a) = (fob)7 . Z](\?))/ — ((jtot(a))_l/Qr(a)7
the set of pre-whitened residuals for pulsar a.
e Note that p,, can be written as

Na

N
Pab = Z Zb: wab(i, Z)ZZ(G)Z(b)

i=1 =1

for some weights wg(i,1).
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A new Bootstrap method

® Thus, to define the Bootstrap version of

. N
A? = Zz(:ab b pab Zzzbwabzl aZ
(a,) (a,b) i=1 I=1

it is enough to be able to generate Bootstrap versions of Z(®
for all a.

® Note that for each a, the variables Z@, e ZJ(\Z) are
approximately iid.

® So, we can resample with replacement to generate the
(pre-)Bootstrap sample

AR A
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A new Bootstrap method

e Note that this direct resampling only captures the marginal
behavior of each set of residuals.

e [t is important to also capture their interactions

(correlations)!
® Thus, the Bootstrap version of {Z(® :a=1,...,m} is
defined by
7x(a) 7Z.0(a)
_ 21/2
Z,x(m) Z.0(m)

where ¥ is an N x N matrix (with N = Ny + ...+ N,,)
consisting of m x m block matrices with (a,b)th block :

[Ctot(a)]fl/ZCab[Ctot(b)]71/2’ a;«éb
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A new Bootstrap method

e Now define

(ab) i=1 I=1

® We can use the Bootstrap distribution of [A}]? to
approximate the distribution of A2.

o We can use the Monte-Carlo based Bootsrrap quantiles of
[A%])? to construct Cls for A?.

e This, in turn, can be used for testing Hy : A; = 0, etc.
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The ENDI!!!

Thank you !!
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