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Simulation Models to Understand Complex Processes

» Requires significant computation time

» more complex phenomena require more time-consuming
simulations!

—— Simulation Outcome
- Elastic Scattering Data
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Model Calibration

>

>

Let (x4, ...,Xqy) be the design points where the data
y = (¥(X1),...,¥(Xq)) is collected

Seek parameter vector(s) 8 € RP to align simulator
outcomes n(8) = (1(x1,0),...,1(Xg,0)) € RY with
observation y € RY

Observation y can be modeled using the expensive
simulation n(@)

y=n(0) +e, e ~N(0,X)
Posterior distribution is computed by using Bayes’ rule
p(dly) o p(Bly) = p(y|6) p(6)
N—— N——
posterior likelihood prior

> Prior p(@) can be computed for any € (i.e., independent of
simulation)

> Likelihood requires expensive simulator evaluation for a
given
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Model Calibration

» MCMC methods require too many evaluations of expensive
simulations

» Alternatively, one builds a cheaper emulator as a proxy to a
simulator, and then leverages MCMC sampling to obtain
draws from the posterior

Generate Obtain Emulate and then
> calibrate with D =

design |
{61.....0n) 0,160} |11, n(61))..... (0n.1(6n))}
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Example of 50 samples using LHS
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Sequential Bayesian Experimental Design

Acquire 0
given D

Update D +
DU {0,n(6)}

Evaluate 7 ()

no, continue
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LHS vs. proposed approach
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Sequential Calibration Approach

Algorithm: Sequential Bayesian experimental design

1 |Initialize Dy = {(0;,m(0;)) :i=1,...,m}
2fort=1,...,ndo
3 Fit an emulator with Dy
4 Generate candidate solutions £;
5 (| Select0™" € argmin A;(6)
0" cL;
6 Evaluate n(6"")
7 Update Dt 1 < Dt U (0"%,n(0™Y))
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Emulation of Simulation Output
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Gaussian Process Model for High-Dimensional

Simulation Output

77(x1 701 ) e 77(x1 ) 0”{)
_ n(x2,601) - n(X2,0n)
=t = . . .

n(xdv 01) T T}(Xd, ont)

GP-based emulator that employs the basis vector approach
that is now standard practice (e.g., Higdon et al., 2008)
» Transform d-dimensional =; into g-dimensional space
> W= [Wq,...,Weg] =B/ =
> B: = [b1,...,bg] stores the orthonormal basis vectors
» Build g independent GPs on the latent space
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Gaussian Process Model for High-Dimensional

Simulation Output

An independent GP is used for each latent output w;(-) with
mean m;;(-) and variance <,(-) such that

wi@)wej ~N (mej0),3(0)),  j=1....q
where

myj(0) = Ki(0,01.0,)K;(01.n,) "W
gtzal(a) = k/(079) - kj(0,91;n,)K/‘(91;nt)_1 kj(01:n150)

Transfer predictions back to the original space such that
predictive distribution of the emulator output is

1(0)[Dt ~ MVN (4(6), S+(0))
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Posterior Inference

Goal is to better learn

p(6ly) = p(yl0)p(0)
where

p(yI8) = (27) 92|52 exp ( -

N =

(v —n(®)= (y —n(o))).

Lemma

Assuming that the covariance matrices ¥ and S(6) are positive
definite,

BIBOIY)ID] = fy (v: m(6). =+ Si(0)) p0),
VIO P = ( gaaargria v (¥ ). 3 +510))

— (v (¥ me(8), T+ $¢(0)))°) p(6)?.
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Expected Integrated Variance for Calibration

EIVAR criterion is calculated by

A(87) = /e 0, (VID(Y18) (6".1") U Dy]) p(8)2dl,

where n* .= n(0") represents the new simulation output at 6*.

At each stage t, the next parameter is chosen to minimize
(approximately) the acquisition function A; such that

0™ € argmin A¢(0").
0" cL;
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Expected Integrated Variance for Calibration

Lemma

Under the conditions of Lemma 1,

[ En 0, (VIoY10) (0" 0" U D)) p(0)°c0

-/ (f/\/ (vi m(8), 32 +51(8))  in (i mi(0), § (£ +81(6) + #,(6,67))) ) (02d8
[ A

2d7d/2|x|1/2 207 d/2|F 1 8(0) — ¢4(6,67)|"/2

Approximate EIVAR is given as

|eref| Z

€Ot

i (v: 16), £ +S:(0)
20 7d/2|E[1/2

f (V: 1(8), 3 (E + Si(6) +¢t(0,o*))>>
29I72[E + $,(0) — ,(0.67)[/2
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Comparison of Different Acquisition Functions
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Application to a Reaction Model

» Reaction code FRESCOX takes the optical model
parameters as input and generates the corresponding
cross sections across angles from 0° to 180°

» Case study uses the elastic scattering data for the
48Ca(n,n)48Ca reaction
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Application to a Reaction Model
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Questions?
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