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Context

Identification of a fissile material based on neutron correlation
measurements Ð→ inverse problem resolution.
Applications : nuclear safeguards, criticality accidents detections, waste
identification ..

Methodology

Direct model : too costly (MC simulations) or biased (analytical model).
Surrogate model for the direct model using Gaussian process regression.
Bayesian resolution of the inverse problem, including the predictive
covariance of the multi-output.

Introduction
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Definitions

Excess of variance in a multiplying
medium compared to a standard Poisson
process.
True correlations = coincident detections
of neutrons from the same fission chain.
Measuring the correlated detections
provide information on the multiplying
medium.

Neutron correlations
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Definitions

R is the average count rate (in neutrons.s−1) during a detection window
of size T .
Y (T ) and X(T ) are respectively the average number of double and triple
true correlations.
Observations : (R, Y∞, X∞) where Y∞ = limT→+∞ Y (T ) and
X∞ = limT→+∞X(T ).

Feynman moments
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Problem description

Prompt multiplication factor 0 < kp < 1.
Detector efficiency εF = nb of counts

nb of induced fissions

Source intensity (in n.s−1)

Assumptions

Homogeneous infinite material
Mono-energetic neutrons
Only fission and capture reactions

y = (R, Y∞, X∞)T = fPM(x) with x = (kp, εF , S) (1)

Point model
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Direct model outputs

Analog Monte-Carlo simulations with MCNP6.
N = 20 independent noisy observations y = (y(k))1≤k≤N .

y(k) = f(x) + ε(k) with ε(k) ∼ N (0, Cm) , Cm ∶ Noise error

The direct model f is identified to the approximated point model fPM.
Observation covariance Cm estimated by bootstrap.

Observations
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Simulation split into NT time windows of width T , with nk the number
of detections in window k.
Asymptotically normal estimators based on central moment estimators

µ̂p = 1
NT

NT

∑
k=1
(nk − µ̂1)p for p > 1 and µ̂1 = 1

NT

NT

∑
k=1

nk

ŶT =
µ̂2

µ̂1
− 1 and X̂T =

µ̂3

µ̂1
− 1 − 3ŶT

Sequential binning
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Goal : uncertainty quantification for decision-making.
Ill-posed inverse with very noisy observations, solved by Bayesian
inference.

y = f(x) + ε with ε ∼ N (0, Cm) , Cm ∶ Noise error

Posterior distribution p(x∣y) sampled by MCMC methods.

p(x∣y) ∝ p(x) exp(
N

∏
k=1
(y(k) − f(x))T Cm

−1(y(k) − f(x)))

Bayesian inverse problem
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Sampling with Adaptive Metropolis instead of standard
Metropolis-Hastings.
Thin posterior distribution but true point outside the support.
Model bias not accounted for in the Bayesian resolution.

Posterior distribution
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Limitations

Point model : analytical model describing neutron correlations. Fast but
biased. UQ not reliable.
Monte-Carlo simulations : accurate but too costly (30 minutes per run).

Solution

GP Surrogate model : fast predictions and improved compared to point
model.

fs(x) ∼ N (fs(x), Cs(x)) , Cs(x) ∶Model error

Training on a dataset based on MC simulations. Analytical model used to
improve training 1.

1. M. C. Kennedy et A. O’Hagan, « Bayesian calibration of computer
models, » Journal of the Royal Statistical Society : Series B (Statistical
Methodology), t. 63, no 3, p. 425-464, 2001

Which direct model ?
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Filtered triggered binning

Neutron history number are known. Accidental correlations can be filtered
out.
Resulting training dataset much less noisy.
Observation noise is kept identical to represent experimental results.

Training dataset (1)
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1125 independent simulations with MCNP6. Feature dimension I = 7,
observation dimension D = 3.
Density, geometries, compositions randomly chosen for each simulation.
Strongly correlated outputs

Training dataset (2)
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Standard GP training and inference

For f ∼ GP (0, k(x, x′)) and training dataset (X, f). Posterior predictive
law on a test set (X∗, f∗) :

p(f∗∣f , X∗, X) ∼ N (µ, Σ)

µ =K(X, X∗)T K(X, X)−1f
Σ =K(X∗, X∗) −K(X, X∗)T (K(X, X) + σ2

nI)−1K(X, X∗)

Hyperparameter selection by maximization of marginal likelihood.

log p(f ∣X) = −1
2

f T K−1
σ f− 1

2
log∣Kσ ∣−

I

2
log(2π) with Kσ =K(X, X)+σ2

nI

Standard scalar GP
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Linear Model of Coregionalization (LMC)

Linear combination of Q latent independent scalar GPs
uq ∼ GP (0, kq(x, x′)) for q ≤ Q with W ∈ MD,Q(R).

fd(x) =
Q

∑
q=1

wd,quq(x)

Standard GP inference with multi-output covariance kernel.

Cov(fd(x), fd′(x∗)) =
Q

∑
q=1

wd,qwd′,qkq(x, x∗)

Multi-output Gaussian processes (1)
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Dataset of 1125 instances. Normalized mean absolute error on the
validation set (30% of dataset).

IGP : independent scalar GP for each output.
LMC2 : LMC GP with 2 latent GPs.
LMC3 : LMC GP with 3 latent GPs.
PM : analytical point model.

IGP LMC2 LMC3 PM
R 0.0083 0.0081 0.0082 0.1933

Y∞ 0.029 0.028 0.027 0.0654
X∞ 0.155 0.073 0.084 0.151

Improved predictions compared to point model. Comparable performance
for the different surrogates. But IGP assume independent channels.

Surrogate models performance (1)
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Reliability of predictive covariances ?
Multi-output coverage probabilities : for a given test instance (X∗, f∗),
fraction of test inputs in the credible regions Iα(f∗) of confidence level α

DM(f∗, fs(X∗))2 = (f∗ − fs(X∗))
T

Cs(X∗)−1 (f∗ − fs(X∗))

Iα(f∗) = {x ∈ X ∣DM(f∗, fs(x))2 ≤ qα}

with qα the quantile of confidence level α for the χ2 distribution with
D = 3 levels of freedom.

Surrogate models performance (2)
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Surrogate models performance (3)
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Bayesian resolution of the inverse problem.

y = fs(x) + η(x) + ε with ε ∼ N (0, Cm) and η(x) ∼ N (0, Cs(x))

Gaussian likelihood with model error and noise error 2.

L(y∣x) ∝ exp(−1
2
(y − fs(x))

T
Ctot(x)−1 (y − fs(x)))

where fs(x) = (fs(x), ..., fs(x))
T
∈ RDN

Ctot(x) =
⎛
⎜
⎝

Cs(x) +Cm . . . Cs(x)
⋮ ⋱ ⋮

Cs(x) . . . Cs(x) +Cm

⎞
⎟
⎠
∈ RDN×DN

2. P. Lartaud, P. Humbert, Garnier et al., « Multi-output Gaussian
processes for inverse uncertainty quantification in neutron noise analysis, »
Nuclear Science and Engineering, p. 1-24, 2023

Posterior distribution sampling
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ICSBEP Benchmark

Test example extracted from ICSBEP Handbook 3. Metallic Pu sphere
with copper reflector and polyethylene-moderated 3He detector.
20 independent observations y(k) with sequential binning in MCNP6.

3. J. B. Briggs, L. Scott et A. Nouri, « The international criticality safety
benchmark evaluation project, » Nuclear science and engineering, t. 145, no 1,
p. 1-10, 2003

Copper-reflected Pu sphere

Paul Lartaud 25 mai 2023 19 / 24



Introduction Inverse problem Surrogate modeling Application Future work Conclusion

MCMC sampling (Adaptive Metropolis) with likelihood including model
and observation noise.
Thin distribution support, long decorrelation time τ̂ ≃ 3000. Large
number of MCMC iterations K = 5 × 106 MCMC iterations.

Copper-reflected Pu sphere (2)
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Assume Gaussian training outputs and
learn directly the output distribution.
Learn mean fs(x) and covariance
Cs(x) with negative log-likelihood
loss.
Predictive covariances included in
inverse problem likelihood.

Probabilistic BNN
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Covariance modeling with auxiliary GP

Covariance is learnt with an auxiliary homoscedastic GP based on
residuals dataset.
Very data hungry. Larger dataset and sparse approximations required 4.

GP with PCE covariance noise kernel

Polynomial Chaos Expansion (PCE) modeling of the covariance.
Polynomial coefficients treated as kernel hyperparameters.
Dramatic increase of nb of hyperparameters. Optimization more difficult.

4. J. Quinonero-Candela et C. E. Rasmussen, « A unifying view of
sparse approximate Gaussian process regression, » The Journal of Machine
Learning Research, t. 6, p. 1939-1959, 2005

Heteroscedastic GP - two approaches
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Toy case example of an heteroscedastic GP regression with 2 outputs.

Heteroscedastic GP - a toy case
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Contributions

Development of a general methodology for reliable inverse UQ with
surrogate models.
Application to a neutron multiplication benchmark.

Limitations

Heteroscedasticity not treated as of yet.
Generalization to other problems in neutron noise analysis ?

Conclusion
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