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Introduction & Summary

I Gaussian process regression (GPR) is a widely used Bayesian technique for inference
in scientific applications with limited scattered data.

I Several physical processes are described by a well-posed boundary value problem
(BVP) of the form {

Lu(x) = f(x), x ∈ Ω,

Bu(x) = g(x), x ∈ ∂Ω,
(1)

where L denotes a linear partial differential operator, Ω a domain with boundary ∂Ω,
and B a general mixed boundary operator.

I We develop a framework for Gaussian processes regression constrained by boundary
value problems, which can infer the BVP solution when only scattered observations of
the source term and/or solution are available.

I The framework benefits from a reduced-rank property of covariance matrices, so it
scales well to large data regimes.

I We demonstrate more accurate and stable solution inference as compared to
physics-informed (PDE-only) Gaussian process regression without BCs.
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Background

I The work of Raissi et al. [RPK17] studied linear differential equation constraints of
the form Lu(x) = f(x) for GPR of a function u(x) through a “co-kriging” setup when
scattered observations of u(x) and the forcing term f(x) were available.

I This is related to the approach of Graepel [Gra03] which considered the case of
observations of f only.

I Solin and Kok [SK19] demonstrated that zero Dirichlet boundary values can be
enforced in GPR by using a covariance kernel expanded in the Dirichlet
eigenfunctions of the Laplacian.

I Rather than merely adding scattered observations of the boundary values, they
obtained a noiseless, global enforcement of the boundary condition over ∂Ω.

I We combine such covariance kernels for boundary conditions with the differential
equation constraints of Raissi et al. within Ω to obtain a GPR model constrained by
a full, well-posed BVP.

I We also considering general mixed boundary conditions, such as Dirichlet conditions
in certain regions of ∂Ω and Neumann conditions in other regions.
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Illustration of GPR posterior

I A prior is specified, encoding some
assumptions about smoothness,
stationarity (or lack thereof) of function or
field via a covariance kernel K(x, x′).

I A noise model – the likelihood function –
relating observations y to dependent
variable f(x) is specified.

I Here, white noise from N (0, σnf ) was
added to some points on the black curve
to generate observations (black crosses).

I Observations are given, and kernel and
likelihood (noise) hyperparameters are
tuned my maximizing the log marginal
likelihood L.

I The mean E[f(x∗)] of the posterior gives
the prediction of GPR, with the posterior
variance giving an esimate of uncertainty
in the prediction.
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Basics of GPR: prior and likelihood

I In GPR, a function of interest u(x) is modeled by a Gaussian process with a given mean
function m(x) and covariance function given by K(x, x′) = Cov(u(x), u(x′)):

u ∼ GP(m,K). (2)

I That is, the vector of values u(X) over a finite collection of locations X has a multivariate
normal density

u(X) ∼ N (m(X),K(X,X)), (3)

where m(X) is a vector of mean values of u and K(X,X) is the covariance matrix between
the values.

I One common choice of the covariance function is the squared-exponential kernel given by

K(x, x′) = s2 exp

(
−|x− x

′|2

2`2

)
(4)

where s2 and `2 are magnitude and length-scale parameters that control the behavior of the
covariance function, i.e., the hyperparameters.

I We assume that data or observations y at the X locations are contaminated by independently
and identically distributed Gaussian noise with variance σ2, giving a likelihood function

p(y|u,X) =
N∏
i=1

1√
2πσ2

exp

(
− (yi − ui(Xi))

2

2σ2

)
. (5)
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Basics of GPR: posterior prediction

I Gaussian process regression proceeds by invoking Bayes’ rule to compute the posterior
distribution of f as

p(u|y,X) =
p(y|u,X)p(u|X)

p(y|X)
, (6)

with log-marginal-likelihood

log p(y|X) =

∫
p(y|u,X)p(u|X)du

= − 1

2
y>(K(X,X) + σ2IN )−1y − 1

2
log |K(X,X) + σ2IN | −

N

2
log 2π,

(7)

using the prior (3) and the Gaussian likelihood (5).

I Here, IN denotes the identity matrix of size N ×N . The predictive distribution for
u∗ = u(x∗) at a new point x∗ is a Gaussian with mean

E[u∗] = K(x∗, X)(K(X,X) + σ2IN )−1y (8)

and variance

Var[u∗] = K(x∗, x∗)−K(x∗, X)(K(X,X) + σ2IN )−1K(X,x∗). (9)

I The most common way to obtain hyperparameters to use maximum likelihood optimization
of the log-marginal-likelihood with respect to the covariance hyperparameters.
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PDE-constrained GPR

I If u ∼ GP(m(x), k(x, x′)) and Lu = f for a linear operator L, and if
m(·), k(·, x′) ∈ dom(L) then LxLx′k(x, x′) defines a valid covariance kernel for a GP
with mean function Lxm(x). This Gaussian process is denoted Lu:

Lu ∼ GP(Lxm(x), LxLx′k(x, x′)). (10)

I The PDE-constrained co-kriging procedure requires forming the joint Gaussian
process [u(x1); f(x2)]. The covariance kernel of this joint GP is

k

([
x1
x2

]
,

[
x′1
x′2

])
=

[
k(x1, x

′
1) Lx′k(x1, x

′
2)

Lxk(x2, x
′
1) LxLx′k(x2, x

′
2)

]
=

[
K11 K12

K21 K22

]
. (11)

I The joint Gaussian process for [u; f ] is then[
u(x1)
f(x2)

]
∼ GP

([
m(x1)

Lm(x2)

]
,

[
K11(x1, x1) K12(x1, x2)
K21(x2, x1) K22(x2, x2)

])
, (12)

where K12(x1, x2) = [K21(x2, x1)]
>

.

I Given Nu observations (Xu, yu) of u and Nf observations (Xf , yf ) of f , GPR for
[u; f ] can be performed to improve accuracy of predictions for u.
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GPR with boundary conditions: spectral expansion covariance kernels

I The posterior mean prediction (8) for u, given data (X, y) = {(xi, yi)}Ni=1, can be written as

E[u(x)] =

N∑
i=1

cik(x, xi), (13)

for coefficients ci ∈ Rd that depend on k, the hyperparameters, and the data (X, y).

I The spectral theory of elliptic operators provides a variety of conditions under which the
solution of an elliptic BVP can be expanded in orthonormal eigenfunctions defined by{

Lφn(x) = λnφn(x), x ∈ Ω,

aiφn(x) + bi∇φn(x) · n̂(x) = 0, x ∈ Γi, i = 1, ..., n,
(14)

for some eigenvalues λn and orthonormal eigenfunctions φn.

I Any convergent expansion in φn(x)φn′(x′) will then satisfy the boundary conditions. Solin
et. al proposed that the covariance function be given by the specific expansion

k(x, x′) =
M∑

n=1

S
(√

λn

)
φn(x)φn(x′), (15)

where S
(√
λn

)
is the spectral power density (Fourier transform) of an “original” covariance

function of interest.

I Solin et. al also demonstrated a reduced-rank property provided by such kernels.
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Illustration of covariance kernels satisfying boundary conditions

I For example, for the squared-exponential covariance kernel (4), the spectral power density is

S(ω) = s2(2π`2)d/2 exp

(
−1

2
`2ω2

)
. (16)
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Figure: Comparison of the squared-exponential kernel k(x, x′ = 0.5) with the corresponding
spectral expansion kernel (15) at x′ = 0.5 for x ∈ Ω = (0, 1), defined using homogeneous
Dirichlet (left) and Neumann (right) spectrum for different M . The squared-exponential
kernel satisfies neither zero Dirichlet nor zero Neumann boundary conditions.
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The reduced rank advantage to spectral expansion covariance kernels

I Using a spectral expansion covariance kernel with M terms, the covariance matrix
augmented with a Gaussian likelihood (white noise) is given by

K̃ = K + σ2IN = ΦΛΦ> + σ2IN , (17)

where Φ is the N ×M matrix of eigenfunctions at the point locations,

[Φ]i,j = φj(xi), 1 ≤ i ≤ N, 1 ≤ j ≤M, (18)

and Λ is the M ×M diagonal matrix of the spectral power density evaluated at the
eigenvalues λj corresponding to the φj ,

Λ = diag
(
S
(√

[λ1 λ2 ... λM ]
))

. (19)

I The inverse of the N ×N covariance matrix (17) can be calculated as

K̃−1 =
1

σ2
(IN − ΦZ−1Φ>), (20)

where we have defined the M ×M matrix Z = σ2Λ−1 + Φ>Φ.

I Solin and Sarkka [SS19] showed that posterior prediction and likelihood estimation can
expressed in terms of Z−1.

I The computational complexity now scales as O
(
M3 +NM2

)
rather than O

(
N3
)
.
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Combining Boundary Value and Linear PDE Constraints

I Given: observations of both the function u and f at potentially disjoint locations Xu and Xf .

I We also assume that a kernel function of the form (15) is used in which the eigenfunctions
and eigenvalues are consistent with the BVP defining the constraint.

I We compute the covariance between the solution u and forcing term f as

Cov(u(x), f(x′)) = Cov(u(x), Lu(x′)) =
M∑
j=1

S
(√

λj

)
φj(x)Lφj(x

′) =

M∑
j=1

S
(√

λj

)
λjφj(x)φj(x

′),

Cov(f(x), f(x′)) = Cov(Lu(x), Lu(x′)) =
M∑
j=1

S
(√

λj

)
λ2
jφj(x)φj(x

′).

I The covariance matrix between the solution and forcing observations can therefore be
constructed in a block-matrix form as[

u(Xu)
f(Xf )

]
∼ GP

([
m(Xu)

Lm(Xf )

]
,Kjoint

)
, (21)

where

Kjoint =

[ ∑M
j=1 S(

√
λj)φj(Xu)φj(Xu)>

∑M
j=1 S(

√
λj)λjφj(Xu)φj(Xf )>∑M

j=1 S(
√
λj)λjφj(Xf )φj(Xu)>

∑M
j=1 S(

√
λj)λ

2
jφj(Xf )φj(Xf )>

]
. (22)
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Combining Boundary Value and Linear PDE Constraints

I Defining the Nu ×M matrix Φu and the Nf ×M matrix Φf as

[Φu]i,j =φj(xi), 1 ≤ i ≤ Nu, xi ∈ Xu, 1 ≤ j ≤M, (23)

[Φf ]i,j = λiφj(xi), 1 ≤ i ≤ Nf , xi ∈ Xf , 1 ≤ j ≤M, (24)

and the block matrix

Φjoint =

[
Φu

Φf

]
, (25)

the covariance matrix (22) augmented by the Gaussian likelihood can be written as

K̃joint = Kjoint + σ2INu+Nf = ΦjointΛΦ>joint + σ2INu+Nf . (26)

I The form of this kernel mimics that of (17). Defining Z with Φjoint in place of Φ allows the
entire reduced-rank framework to be utilized, with the matrix Φjoint in place of Φ throughout.

I Allows for reduced-rank GPR with noisy data enhanced by PDE and BC prior knowledge.

I Also allows for a new application: inference of solution u to a BVP with only IC and BC
conditions, and scattered observations of f rather than u.
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Comparison of unconstrained and constrained GPR for −u′′ = f, u(0) = u(1) = 0
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Figure: Top Left: Unconstrained
GPR using a standard Sq.Exp. kernel;
rel. `2 error of 42.5%.
Top Right: BC-constrained GPR
using the spectral expansion kernel;
rel. `2 error of 14.6%.
Bottom Left: PDE-constrained GPR
using a squared-exponential kernel; rel.
`2 error of 25.9%.
Bottom Right: BVP-constrained
GPR; rel. `2 error of 9.3%.

I 5 observations (black dots) of the function u at randomly sampled points in [0, 1], obtained
by sampling u and adding white noise with σ = 0.01. PDE and BVP constrained problems
use 5 observations of f sampled at the black “x” marks. The relative errors are between the
posterior mean of the GPR (dashed blue curve) and the exact solution u (solid black curve).
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Inferring the solution to −u′′ = f, u(0) = u(1) = 0 with BVP data only (no interior observations)
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Figure: Effect of enforcing the boundary conditions when inferring u from 5 observations of f .

I When using the PDE-GP method (left), inference fails without observations of u, as even
with complete knowledge of f , u is only determined up to an arbitrary linear function.

I When BCs are treated in the PDE-GP method as point observations of u (center), accurate
inference is possible although uncertainty is nonzero in contrast to the BVP-GP method.

I In the BVP-GP method (right), the boundary conditions are enforced with certainty via the
covariance kernel, not as discrete observations, which is advantageous in higher dimensions.
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Error w.r.t. number of observations and noise in observations
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Figure: Plot of the error between the posterior mean prediction u∗ and the true solution u,
measured in the relative `2 norm over 100 uniformly spaced test points in [0, 1]. For the
relatively large value of white noise standard deviation σ = 0.1 (applied to observations of
f), the trend is less consistent, but for σ = 0.01 and σ = 0.001 the error trends more
consistently and saturates around 1% for both observations at LHC sampled locations and
on the uniform grid.
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Error w.r.t. number of observations and kernel expansion order
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I Left: Convergence in log-log scale of the error between the posterior mean prediction u∗ and
the true solution u, trained with noiseless observations, measured in the relative `2 norm
over 100 uniformly spaced test points in [0, 1].

I The noise/likelihood hyperparameter σ is fixed to 10−17. For fixed number M of
eigenfunctions defining the covariance kernel, the error decreases with the number nf of
observations. As M increases, the error decreases.

I Right: Plotting the spectral expansion covariance kernel k(x, x′ = 0.5) for various M reveals
that artifacts are present when the correlation length hyperparameter ` (width of the parent
squared exponential kernel) is small, and increasing M reduces these artifacts.
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Figure: Comparison of PDE
constrained GPR (top) and BVP
constrained GPR (bottom). The left
column shows observations of u (red
dots) and locations of the observations
of the source f (black crosses) and the
resulting mean prediction surface u∗

(blue). The xy-plane is plotted in
orange as a reference for observing the
boundary behavior of u∗. The right
column plots the absolute error
between the mean prediction u∗ and
the true solution u. The BVP
constrained GPR demonstrates a lower
relative `2 error over the uniform
100× 100 test grid: 2.88% vs 5.25%.
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Conclusion & Acknowledgements

I We have developed a framework that combines the use of spectral decomposition
covariance kernels with differential equation constraints in a co-kriging setup to
perform Gaussian process regression constrained by boundary value problems.

I Novel application of Gaussian process regression to BVPs with Neumann boundary
conditions and to inference of the solution u of BVP from knowledge of the boundary
condition and scattered observations of the source term alone.

I The lower-dimensional representation inherent to the spectral covariance kernel
yielded an efficient training and inference process.

I The BVP-GP method can be seamlessly used in a spectrum of applications from
small datasets with high noise to large, noiseless datasets.

I In more complex domains, numerically computed eigenfunctions may be substituted.

I This work [SGF+, GFS22] was supported by the LDRD program at SNL, the John
von Neumann postdoctoral fellowship at SNL, and by the U.S. Department of Energy,
Office of Advanced Scientific Computing Research under the Collaboratory on
Mathematics and Physics-Informed Learning Machines for Multiscale and
Multiphysics Problems (PhILMs) project.
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