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Structure, Reactions and Astrophysics

Nov 14 — 16, 2022

Bayesian rr_‘ethOds for flat the intersection of low-energy nuclear physics {| - Tremendous progress || Integrated structure & reaction theory for medium-mass and heavy nuclei
extrapolatlons to and fundamental symmetries Alejandro Garcia in CEFT, many-body theory, UQ & HPC
. - o ! _ ) . ! Deploy ML/AI tools and assess
stellar energ|es Experiencing a revolution in our field brought by: Bayesian statistics allows for rigorous o
UQ & propagation in EFT-based uncertainties
Needs Daniel Phillips J}f 2. Improved theory allowing for calculations (use emulators!) Christian Jutta Esch . . .
optimizing opportunities and Drischler utta tscher, (In eut"on-rlCh environm
Detailed discussion of systematic uncertainties, ideally with covariance calculating SM expectations, D

matrices, in experimental publications; theory-experiment collaboration

including uncertainties. Studies examining variations in theoretical y-strength

functions and nuclear level densities show the large
impact of (n,y) rate uncertainties on astrophysical neutron
capture processes (i-process and )

Nicole Vassh

Collaboration with statisticians (e.g., through ISNET series of meetings,

Coborston wih st _ Intersections of low-energy nuclear
unding for inter-disciplinary collaboration) on forefront statistical

e —— C. Hebborn physics and fundamental symmetries

EnChanCing the accuracy Of SVStemaUC measurements along What progress has been Max Brodeur, Vincenzo Cirigliano, Alejandro Garcia, Kyle
optical potentials isotopic chains to improve

' . Leach, Dan Melconian, Peter Mueller, Saori Pastore, Jaideep h d f
i reaction theory made since the |aSt LRP? Singh, Ragnar Stroberg t .eory nee S or rare
Outlook and recommendations : . . Isotope science
) . ! Develop more accurate global (dispersive) optical | | * Since the last LRP (relevant to the structure community): F.M. Nunes p
Inclusion of uncertainty quantification: | 0.1 vith uncertainties 1. Nuclear theory related to FS has made MAJOR strides in several areas B " I .
Bayesian framework well suited for UQ, ! e - including OvB3 decay NMEs, neutrino-nucleus scattering, corrections to aye5|an dana y5|5 as a
i i X " Quantifying model uncertainties of popular models : : o) -
extrapolation & interpolation || e.g. for transfer reactions -> ADWA o DWEA? beta decay in the extraction of Vud (both nuclear and radiative) - especially

UQs. (Talks by: Heiko Hergert and Joe Carlson)

tool for nuclear reactions

Computing (HPC, Quantum, Al/ML) [[Nuclear Structure and Reaction Theory

. . o " ki : brock, Phillips, Piarulli, I, Schunck, , Vol
What are the most compelling scientific opportunities o ook Prlps. Pl Porel sehunck, Tevs, Hoha
over the next decade & their potential scientific impact?

* Reactions are awesome: Reactions are the best window into the structure and dynamics of
Gaute Hagen, Calvin Johnson, Michelle Kuchera nuclei, and address data needed for other fields. Full UQ and reaction-theory modeling crucial
= Development of emulators, Al/ML Dean Lee. Pieter Maris, Kyle Wendt e

and Bayesian methods: Betty Tsang . 4 .
- Opens up entirely new ways to make l|Neutron Stars and Dense Matter P I’Ed ictive th eory Of nu Clel

predictions and quantify

uncertainties Since LRP2015, major Quantification of uncertainties a n d t h e l r I nte ra Ct | O n S

breakthroughs in data & models—>Bayesian

measurements will help towards quantified uncertainties Papenbrock
constrain/inform theoretical models

5-10 year priorities for nuclear data covariances and . e . . .
uncertainty quantification as defined by the Nuclear Uncertamty quantlflcatlon & Baye5|an machine

Data Uncertainty Quantification Meeting  b. Neudecke learning have advanced nuclear theory

(maximize the success of an
experiment)
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control parameter in the Hamiltonian matrix exceeds some threshold value. In this Letter we present a new
technique called eigenvector continuation that can extend the reach of these methods. The key insight is that
while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated
by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold. We
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Reduced Basis
Methods for
Partial Differential

Fig. 3.1 The “snapshots” u,(#").1 < n < N on the parametric manifold .#,, the RB space

Vy =span{(,..., . . . . . . . .
Equations Sovlmi;E:r:jﬁ'u) c 6:,} ‘] we will further discuss these issues in Chap. 5. The idea behind RB methods is to
q generate an approximate solution to problem (3.11) belonging to a low-dimensional

ﬁ]lntroduction ol subspace Vy C V), of dimension N < N,,. The smaller N, the cheaper the reduced
problem to solve. Precisely, setting a RB method entails:

1. the construction of a basis of Vy. We start from a set of high-fidelity solutions

{un(p), ..., un(n™)}, (3.18)

that we call snapshots, corresponding to a set of N selected parameters

Sy={u',... .y’ c 2. (3.19)
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1

vantage.

Note that because the x parameters do not appear linearly in the Hamiltonian,
one can no longer make a single set of matrix elements calculations for all of the
test parameter sets. In other contexts this might be a relevant computational disad-

The nuclear potential that we employ is additive in the d =
16 LECs, i.e., we can express the Hamiltonian as H(c) = Hg +
Zle ¢iH;, where Hp includes the kinetic energy. Any Hamilto-
nian with more than one interaction parameter can be written in
this form, where each ¢; in general may be depend nonlinearly
on other parameters. Furthermore, each term H; fori=1,...,16
can be E‘o-jscted onto the EC subslﬁce once and then used for an
arbitrary number of emulations. Each of these corresponds to a

Vi So (1)
Vig (1)

— 7 — 7
VORe KRr —|—V05€ Ksr

2 2
Vore “F" + Ve ™

matrix. This problem can be avoided l_)y runnin& an orthggonal-
ization on the EC vectors that stabilizes the ;Jbseau?nt-nun-leﬁ-
cal steps and reveals the effective dimension of the EC subspace.
Since this step leads to a unit norm matrix, it also reduces the
per-sample evaluation cost at the price of additional preprocessing
effort (see Appendix A).

An ‘empirical interpolation” method: application to efficient
reduced-basis discretization of partial differential equations

V Maxime Barrault?®, Yvon Maday ®, Ngoc Cuong Nguyen ¢, Anthony T. Patera ¢

(2004)

Efficient emulators for scattering using eigenvector continuation
R.J. Furnstahl, A.]. Garcia, P]. Millican, Xilin Zhang* (2020)
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[ READMEmd Initial commit a long time ago
[ Reference-Domain.py Create a ref domain for multi-solutions a long time ago
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Switch branches/tags X
[ ‘Fmd or create a branch... ]
Branches Tags
main default
v EC
& B.Galerkif /R{ Model reduction methods for nuclear © un
{> Code Issues emu Iators (2022)
: J A Melendez' @, C Drischler?®, R J Furnstahl'*©,
Pman-| ¥ A J Garcia' © and Xilin Zhang?
! Department of Physics, The Ohio State University, Columbus, OH 43210, |, commits
United States of America
. % Facility for Rare Isotope Beams, Michigan State University, MI 48824, :

B Collocation-Ms United States of America time ago
(9 Cool-technique.py We have shown that the ‘RB method’ is the established name of the methods described
) empirica-nterpolation-Met! 1N the nuclear physics literature as EC, and suggest its adoption. We believe that putting EC
[) Gresdy-Sampling in a more general context, and particularly using a unified naming convention, will not only
() POD-Basipy alleviate confusion due to a conflict of terms used in other fields, but will permit access to a

much broader literature. It would surely accelerate progress in the application of emulators in
O ReADMEmd the nuclear community [95] and facilitate fruitful external collaborations.
[ Reference-Domain.py
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Branches Tags

main default

v EC
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Training and Projecting: Extending Eigenvector Continuation through a Galerkin .
Method formulation )

<{> Code Issues

¥ main ~

Edgard Bonilla,'* Pablo Giuliani,>? * Kyle Godbey,? and Dean Lee*
! Department of Physics, Stanford University, Stanford, CA 94305, USA
2FRIB/NSCL Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
3 Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA

a Collocation-N 4 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
(Dated: January 25, 2022)
a Cool-techniq We propose the Galerkin Continuation method (GC), which combines the insight from Eigenvector
Continuation (EC) with the formulation used for Galerkin methods. We show connections between
[ Empirical-Inte} GC and some of the established results in the EC literature, and how it can be used to extend
the techniques of EC for the emulation of a broad set of problems, including non-linear equations.
[ Greedy-Samp As a first study, we apply GC to two non-linear problems: the one dimensional Gross Pitaevskii
equation, and the nuclear many body via density functional theory for “®Ca, the latter of which also
[ POD-Basi tests the formalism in the case of coupled equations. GC is able to reproduce the exact results in
-Basis.py| . : To : 4
both problems with a very small error, showing a performance in interpolation and extrapolation
similar to the one observed in previous EC applications. We conclude this letter with insights for
B README.md potential real-case applications of the proposed method, as well as future directions to explore for
a its improvement.
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Neural Implicit Flow: a mesh-agnostic dimensionality
reduction paradigm of spatio-temporal data
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reduction paradigm of spatio-temporal data
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Optical potentials for the rare-isotope beam era (2022)

In regions of the nuclear chart away from stability, which represent a frontier in
nuclear science over the coming decade and which will be probed at new rare-
isotope beam facilities worldwide, there is a targeted need to quantify and
reduce theoretical reaction model uncertainties, especially with respect to
nuclear optical potentials.
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Reduced Basis Method
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Reduced Basis Methods
in Nuclear Physics
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Nuclear Physics
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Takeaways

1) These methods are SO cool

2) UQ needs multidisciplinary efforts

This is very
important to us

Work in collaboration with experts

See Kyle’s talk tomorrow
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