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Ultra-cold Fermi gases

* Highly non-perturbative, short-range, attractive interaction

 Two component fermions (spin-up & spin-down, heavy & light, etc.)

 Dilute — mostly s-wave
— behavior mainly governed by s-wave scattering length a and effective range r,

 Can be created in the laboratory with variable scattering length a

— a<0 BCS regime of long-range Cooper pairs
— a>0 BEC regime of tightly-bound dimers
— la| = o Unitary limit (universal)

* Relevant for understanding superfluidity in fermionic systems, dilute neutron star matter,
and development of many-body methods



The BCS-BEC Crossover

BEC

1/kpa
Weakly attractive —1 0 1 Weakly repulsive

Crossover region
Strongly interacting



Our Approach

« Simulate unpolarized gas with /N fermions in a periodic box of side length L

* Design a neural-network quantum state (NQS) that efficiently captures pairing and backflow
correlations, while enforcing symmetries and boundary conditions

» Train NQS using variational Monte Carlo (VMC) method, i.e. minimize the energy (E)

Sample from | ¥ | Compute (E) and V,(E) Update parameters 0

 Compare to state-of-the-art Diffusion Monte Carlo (DMC) calculations

 Compare to similar NQS based on Slater determinants, with and without backflow



Fermionic Wave Functions

* Wave function must be antisymmetric w.r.t. particle exchange

P(X) = /PP(X) X=X ..., Xy)

/ \ X; = (I, 5°)

antisymmetric antisymmetric

» Typically use a Slater Determinant of single-particle pairing orbitals  ®(X) = det [gba(xl-)]

* For ultra-cold Fermi gases, state-of-the-art calculations use a Slater determinant
of spin-singlet pairing orbitals (aka geminal or BCS wave function) ®(X) = det [¢(Xl-T, X; l)]

 However, BCS wave function relies on fixing the spins (not applicable for nuclear systems)



Pfaffian Wave Function

* Most general way to construct an antisymmetric wave function from a pairing orbital
D(X) = pf[qb(xl-, X])]
where @ must be antisymmetric.

 For our NQS, we define
¢(Xi9 X]) = I/(Xia X]) o I/(Xja Xi)

where v IS a neural network.

» Systematically improvable (universal approximation theorem)

 Naturally encodes singlet and triplet pairing because v takes spins as input



Message-Passing Neural Network

* Used in our study of the homogenous electron gas
(Pescia et al. arXiv:2305.07240)

* [Jype of graph neural network

 Must be permutation equivariant to maintain
antisymmetry

* |teratively build correlations into new one-body and
two-body features from original ones

* Nodes = one-body features

* Edges = two-body features
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Pfaffian Wave Function with Backflow

* Use output of MPNN as input to pairing orbital instead of raw coordinates

O(X) = pf|p(g;)]

 Jastrow correlator based on a “Deep Set” (Zaheer et al. - arXiv:1703.06114)

JX)=p| ) i)
i7]
where p and { are neural networks.

* Most results shown use an MPNN with 2 iterations (~8500 parameters total)
* We also enforce periodicity, translational invariance, parity and time-reversal symmetry

* This is the first time neural backflow transformations have been applied to the Pfaffian :)

260
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Different effective ranges r, = 2/u Different scattering lengths near unitarity
at unitarity (1/ak, = 0) (fixed r, = 0.2)

—— l/akp =—0.5
—@— l/akF: 0
—h— I/akF: 0.5

g1 1 (kpr)
g1 1 (kpr)
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“Neural-network quantum states for ultra-cold Fermi gases”

Conclusions arXiv:2305.08831

* Our Pfaffian ansatz is very general — works for any unpolarized system and any Hamiltonian
(even those that exchange spin!)

 Can obtain lower energies than state-of-the-art diffusion Monte Carlo methods
 Our message-passing neural network efficiently builds pairing and backflow correlations

* We require far fewer parameters compared to other NQS applied to similar problems
(~8500 vs millions)

e Future work:

— Calculate the gap: expand the Pfaffian matrix to include one unpaired single-particle orbital

— Smaller r,: better linear extrapolation to the r, — 0 limit

— Larger N: As an initial test, we only used N = 14

31



Thank you!

Questions?

32



Infinite Neutron Matter

* Preliminary tests at low density

p =~ 0.002 fm™

« Pfaffian with 1-layer MPNN (Graph
Net) performs better than hidden
nucleon and pfaffian ansatze

g
o

Energy per particle (MeV)

™
U
|

g
o

.
U1
|

—— Hidden Nucleon
Pfaffian

—— Pfaffian with Graph Net

0

1000 2000 3000
Optimization Steps

4000
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Poschl-Teller Potential

* Regularized, short-range attraction between opposite-spin pairs

2 //t2

2m cosh(ur;)

Vi= (Sl.ZsjZ — 1) vy

o Effective range =~ 2/u

» Keep v, fixed, pretrain with small u

————— Attractive Coulomb

* Provides exact solution of two-body _12.5-

problem i —— mPT,u=5
~15.01
. . . . . : —— mPT, u=10
* Other interaction potentials give similar ~17.51!
: : : I — mPT, = 20
results near unitarity as long as effective .
range is the same 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
r
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Slater Determinant

O(X) = det[p, (x,)] = det

P1(Xy)  Pi(X,)
Pr(X1)  Pr(X,)

PN(X])  Pa(X5)

P1(Xy)
P> (Xy)

PN (Xy)
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Number-projected BCS Wave Function

X1, X1)  P(Xpp, X))

O(X) = det [p(x;;, x;))] = det Qb(XzT.,Xl ) qb(XZT.,le)

Xy X)) PXyppsXo))

P(X11,Xnp2))
¢(X2T9 XN/Zl)

¢(XN/2Ta XN/2l)
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Periodic Boundary Conditions

e Separation vector

=T, (COS(anU-/L), sin(znr,.j/L))

e Distance
vl > || sin(2zr;/L)|]

* Absolute positions are ignored to enforce translational invariance
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Parity and Time-Reversal Symmetry

. We carry out the VMC calculations for the unpolarized gas using ¥*7(R, S) given by
PP(R,S) = Y(R,S) + P(—R,S)
PR, S) = PI(R, S) + (- DV PA(R, — 5)

where R and § are the set of all positions and spins, respectively.
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Message-Passing Neural Network Equations

* |teratively builds correlations into new one- and two-body features from old ones

* Skip connections help stabilize training and avoid vanishing gradients

 Has been effective for the electron gas, despite having orders of magnitude fewer parameters
compared to FermiNet

V. = (5°) fort=1, ..., T:
! l
V.. = (1, Ty S+ 8°)

i ij> Vi Oi Y m® = M, (h(t—l)’ h(-). hg-l))

I l ] I

h® = (v;, Av) h") = (v,-, F, (hgf—”, m§f>)>, m{” = Pool ({mf.;) j # i})
hV) — (v.., Bv:)

ij gy 1) (=1 1

hij = (Xl-j, G, (hlj ,m,
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Determinant

Defined for n X n matrices

det(A) = Z Sgn(U)ﬁai,a(i)
i=1

oES,

det(A1) = det(A)

det(A) det(B) = det(AB)

Pfaffian

Defined for 2n X 2n skew-symmetric matrices

1 n
pt(A) = | Z Sgn(ﬂ)H%(zi—l),a(zi)
‘ i=1

GESZn

pf(A") = (=1)"pf(A)

pf(A)pf(B) = exp (%tr log(ATB))

det(A) = pf(A)?
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1.0

Unitary Fermi Gas (u = 5)

— Pfaffian without MPNN
— Pfaffian with 1-layer MPNN
..................... HF

------- VMC (J+PW)

— = DMC (J+PW)

—-= VMC (]+BCS)

— DMC (J+BCS)

| | I I
2000 4000 6000 8000 10000
Optimization Step
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