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Ultra-cold Fermi gases
• Highly non-perturbative, short-range, attractive interaction 


• Two component fermions (spin-up & spin-down, heavy & light, etc.)


• Dilute    mostly -wave 
             behavior mainly governed by -wave scattering length  and effective range 


• Can be created in the laboratory with variable scattering length 


 —                  BCS regime of long-range Cooper pairs


 —                  BEC regime of tightly-bound dimers


 —           Unitary limit  (universal)


• Relevant for understanding superfluidity in fermionic systems, dilute neutron star matter,  
and development of many-body methods 
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Our Approach
• Simulate unpolarized gas with  fermions in a periodic box of side length 


• Design a neural-network quantum state (NQS) that efficiently captures pairing and backflow 
correlations, while enforcing symmetries and boundary conditions


• Train NQS using variational Monte Carlo (VMC) method, i.e. minimize the energy  
 
 
 
 
 

• Compare to state-of-the-art Diffusion Monte Carlo (DMC) calculations


• Compare to similar NQS based on Slater determinants, with and without backflow
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Fermionic Wave Functions
• Wave function must be antisymmetric w.r.t. particle exchange 
 
                                                                      
 
                                                                                                    


• Typically use a Slater Determinant of single-particle pairing orbitals     


• For ultra-cold Fermi gases, state-of-the-art calculations use a Slater determinant 
of spin-singlet pairing orbitals (aka geminal or BCS wave function)     


• However, BCS wave function relies on fixing the spins (not applicable for nuclear systems)

Ψ(X) = eJ(X)Φ(X) X = (x1, . . . , xN)

xi = (ri, sz
i )

Φ(X) = det [ϕα(xi)]

Φ(X) = det [ϕ(xi↑, xj↓)]
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Pfaffian Wave Function
• Most general way to construct an antisymmetric wave function from a pairing orbital 
 
                                                        
 
where  must be antisymmetric.


• For our NQS, we define 
                                                  
 
where  is a neural network.


• Systematically improvable (universal approximation theorem)


• Naturally encodes singlet and triplet pairing because  takes spins as input

Φ(X) = pf[ϕ(xi, xj)]
ϕ

ϕ(xi, xj) ≡ ν(xi, xj) − ν(xj, xi)

ν

ν
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Message-Passing Neural Network

• Used in our study of the homogenous electron gas 
(Pescia et al. arXiv:2305.07240)


• Type of graph neural network 


• Must be permutation equivariant to maintain 
antisymmetry


• Iteratively build correlations into new one-body and 
two-body features from original ones 


• Nodes = one-body features


• Edges = two-body features
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Pfaffian Wave Function with Backflow
• Use output of MPNN as input to pairing orbital instead of raw coordinates 
 
                                                       


• Jastrow correlator based on a “Deep Set” (Zaheer et al. - arXiv:1703.06114) 
 

                                                       

where  and  are neural networks.


• Most results shown use an MPNN with 2 iterations (~8500 parameters total)


• We also enforce periodicity, translational invariance, parity and time-reversal symmetry


• This is the first time neural backflow transformations have been applied to the Pfaffian :) 

Φ(X) = pf[ϕ(gij)]

J(X) = ρ ∑
i≠j

ζ(gij)

ρ ζ
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Different effective ranges   
at unitarity 

re = 2/μ
(1/akF = 0)

Different scattering lengths near unitarity 
(fixed re = 0.2)
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Conclusions
• Our Pfaffian ansatz is very general — works for any unpolarized system and any Hamiltonian 

(even those that exchange spin!)


• Can obtain lower energies than state-of-the-art diffusion Monte Carlo methods 


• Our message-passing neural network efficiently builds pairing and backflow correlations


• We require far fewer parameters compared to other NQS applied to similar problems  
(~8500 vs millions)


• Future work:


    — Calculate the gap: expand the Pfaffian matrix to include one unpaired single-particle orbital


    — Smaller :  better linear extrapolation to the  limit


    — Larger : As an initial test, we only used 

re re → 0

N N = 14
31

“Neural-network quantum states for ultra-cold Fermi gases” 
                                       arXiv:2305.08831



Thank you! 
 

Questions?
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Infinite Neutron Matter
• Preliminary tests at low density 




• Pfaffian with 1-layer MPNN (Graph 
Net) performs better than hidden 
nucleon and pfaffian ansatzë

ρ ≈ 0.002 fm−3
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• Regularized, short-range attraction between opposite-spin pairs 
 




• Effective range

Vij = (sz
i sz

j − 1) v0
ℏ2

2m
μ2

cosh2(μrij)

≈ 2/μ

• Keep  fixed, pretrain with small 


• Provides exact solution of two-body 
problem


• Other interaction potentials give similar 
results near unitarity as long as effective 
range is the same

v0 μ

Pöschl-Teller Potential
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Slater Determinant

Φ(X) = det[ϕα(xi)] = det

ϕ1(x1) ϕ1(x2) ⋯ ϕ1(xN)
ϕ2(x1) ϕ2(x2) ⋯ ϕ2(xN)

⋮ ⋮ ⋱ ⋮
ϕN(x1) ϕN(x2) ⋯ ϕN(xN)
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Number-projected BCS Wave Function

36

Φ(X) = det [ϕ(xi↑, xj↓)] = det

ϕ(x1↑, x1↓) ϕ(x1↑, x2↓) ⋯ ϕ(x1↑, xN/2↓)
ϕ(x2↑, x1↓) ϕ(x2↑, x2↓) ⋯ ϕ(x2↑, xN/2↓)

⋮ ⋮ ⋱ ⋮
ϕ(xN/2↑, x1↓) ϕ(xN/2↑, x2↓) ⋯ ϕ(xN/2↑, xN/2↓)



Periodic Boundary Conditions
• Separation vector  
 
 
                                 
 

• Distance 
                                               

• Absolute positions are ignored to enforce translational invariance

rij = ri − rj ⟼ (cos(2πrij /L), sin(2πrij /L))

∥rij∥ ⟼ ∥ sin(2πrij /L)∥
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Parity and Time-Reversal Symmetry
• We carry out the VMC calculations for the unpolarized gas using  given by 
 
                                        
 
                                      
 
where  and  are the set of all positions and spins, respectively. 

ΨPT(R, S)

ΨP(R, S) = Ψ(R, S) + Ψ(−R, S)

ΨPT(R, S) = ΨP(R, S) + (−1)N/2ΨP(R, − S)

R S
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Message-Passing Neural Network Equations
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• Iteratively builds correlations into new one- and two-body features from old ones


• Skip connections help stabilize training and avoid vanishing gradients


• Has been effective for the electron gas, despite having orders of magnitude fewer parameters 
compared to FermiNet


 
 

 

h(0)
i = (vi, Avi)

h(0)
ij = (vij, Bvij)

for  : 
 
         

          

         

t = 1, . . . , T

m(t)
ij = Mt (h(t−1)

i , h(t−1)
j , h(t−1)

ij )
h(t)

i = (vi, Ft (h(t−1)
i , m(t)

i )), m(t)
i = Pool ({m(t)

ij | j ≠ i})
h(t)

ij = (xij, Gt (h(t−1)
ij , m(t)

ij ))

 
 

 

vi = (sz
i )

vij = (rij, rij, sz
i ⋅ sz

j )



Determinant                           Pfaffian
Defined for  matrices


 

 
 

 
 

n × n

det(A) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

ai,σ(i)

det(AT) = det(A)

det(A) det(B) = det(AB)
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Defined for  skew-symmetric matrices


 

 

2n × 2n

pf(A) =
1

2nn! ∑
σ∈S2n

sgn(σ)
n

∏
i=1

aσ(2i−1),σ(2i)

pf(AT) = (−1)npf(A)

pf(A)pf(B) = exp ( 1
2

tr log(ATB))
 
det(A) = pf(A)2
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