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John W. Clark, Whyman-Crow professor. Emeritus
of physics, Washington University

« John Clark. A great internationally renown scientist with a large
production of famous articles in a large range of research fields.

* He has been a great teacher of scientific deciplines and lead many
PhD-students to a succesful carrier.

* He has been pionered or started new fields of research within the
area of theoretical physics and applied phycics such as neural nets

 His wide range of professionalism and excellency have amaized all
scientists and students.

* "Du hast perlen und diamanten mein lieber, -was willst du doch
meer” (Heine).
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On the controllability of quantum-mechanical systems

Garng M. Huangand T. J. Tarn
Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 63130

John W. Clark
Department of Physics and McDonnell Center for the Space Sciences, Washingron University, St Louis,
Missouri 63130

{Received 25 August 1981; accepted for publication 10 June 1983)

The systems-theoretic concept of controllability is elaborated for quantum-mechanical systems,
sufficient conditions being sought under which the state vector ¢ can be guided in time to a chosen
point in the Hilbert space .27 of the system. The Schradinger equation for a quantum object
influenced by adjustable external fields provides a state-evolution equation which is linear in ¢
and linear in the external controls (thus a bilinear control system). For such systems the existence
of a dense analytic domain %" in the sense of Nelson, together with the assumption that the Lie
algebra associated with the system dynamics gives rise to a tangent space of constant finite
dimension, permits the adaptation of the geometric approach developed for finite-dimensional
bilinear and nonlinear control systems. Conditions are derived for global controllability on the
intersection of 2, with a suitably defined finite-dimensional submanifold of the unit sphere S
in -#, Several soluble examples are presented to illuminate the general theoretical results.

PACS numbers: 03.65.Bz, 02.20.5v
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Superfluidity in nuclear systems and neutron stars

Armen Sedrakian® and John W. Clark®*

Frankfurt Institute for Advanced Studies, Ruth-Moufang str. 1, D-60438 Frankfurt am Main, Germany
Department of Physics and MeDonnell Center for the Space Sciences, Washinpton University, St. Louls, MO 63130, USA
* Centro de Investigacio em Matemdtica e Aplicagtes, University of Madeira, 9020-105 Funchal, Madeira, Portugal

Received: 23 June 2019 / Revised: 8 August 2019 / Published online: 30 September 2019
) Societd Italiana di Fisica | Springer-Verlag GmbH Germany, part of Springer Nature, 2019
Communicated by N. Alamanos

Abstract. Nuclear matter and fnite nuclei exhibit the property of superfluidity by forming Cooper pairs.
We review the microscopic theories and methods that are being emploved to understand the basic proper-
ties of superfuid nuclear systems, with emphasis on the spatially extended matter encountered in neatron
stars, supernova envelopes, and muclear collisions. Our survey of quamtum manyv-body methods includes
technigues that employ Green Iunctions, correlated basis functions, and Monte Carlo sampling of quan-
tium states. With respect to empirical realizations of nucleonic and hadronic superfluids, this review is
focused on progress that has been made toward gquantitative understanding of their properties at the level
of microscopic thearies of pairing. with emphasis on the condensates that exist under conditions prevailing
in neutron-star interiors. These include singlet S-wave pairing of neutrons in the mnner crust, and, in the
quantum fluid interior, singlet-S proton pairing and triplet coupled P-F-wave neutron pairing. Addition-
ally, caleulations of weak-interaction rates in neutron-star superfluids within the Green linction formalism
are examined in detail. We close with a discussion of quantum vortex states in nuclear systems and their
dynamics in neutron-star superfuid interiors.

PACS. 97.60.Jd Neutron stars — 21.65.4+F Nuclear matter — 47.37.4q Hydrodynamic aspects of super-
Huidity; quantum Auids — 67.85.4d Ultracold sases, trapped sases — 74.25.Dw Superconductivity phase

diagrams
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Nuclear Physics AS40 (1992} 1-26 NUCLEAR
North-Holland PHYSICS A

Learning and prediction of nuclear stability by neural networks Citations per year

8. Gazula and J.W. Clark 12 T

McDonnell Center for the Space Sciences and Department of Physics, Washington University,
St. Louis, MO 63130,USA

o

H. Bohr
School of Chemical Sciences, University of Illinois, Urbana, IL 61801, USA

fara]

o s]

Receivad 17 June 1991
{Revised 2§ November 1991) 4 (]

Abstract: The backpropagation learning algorithm is used to teach layered feedforward networks
of model neurons the existing data on nuclear stability and atomic masses. Specific ap-
plications include (i) the constructisa of networks that decide stability, (ii) learning and
prediction of nuclear mass excesses aind (iii) analysis of the sysiematics of neutron separation
energies. With suitable architecture and representation of input and output data, learning
can be accomplished with high accuracy. Evidence is presented that these new adaptive com-
putational systems can grasp essential regularities of nuclear physics including the valley of
fi-stability, the pairing effect and the existence of shell structure. Significant predictive ability
is demonstrated, opening the prospect that neural networks may provide a valuable new tool
for computing nuclear properties and, more broadly, for phenomenological description of
complex many-body systems.
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Fig. 15.1. Relative abundance, M, for different even-even nuclides, plotted as a
function of 4. The abundances are messured relative to 8i, with H(S)) - 104, [Based
on A.O.W. Cameron, “A New Table of Abundance of the Elements in the Solar Sy»
tem,” Origin end Distribution of the Elements (L H. Arens, od.), Pergamon Press, New
York, 1968, p. 125)

responsible for the pronounced peaks: If the last electron fills a major shell,
it is particularly tightly bound, and the separation energy reaghcs a peak.
The next electron finds itself outside a closed shell, has very little to hold
onto, and can be removed casily. The nuclear quantity that is analogous to
the jonization potential is the separation energy of the last nucleon. If, for

Nuclear shell model
Relative Abundance for different even-even nuclides as fct of A.

or the elements
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Fig, 15.2, Separation encrgies of the I atoms ( ion potentials). (Based on

data from C. E, Moore, “lonization Potentials and lonization Limits Derived from
the Analyses of Optical Spectra,” NSRDS--NBS 34, 1970.)

instance, a neutron is removed from a nuclide (Z, N), a nuclide (Z, N — 1)
results. The energy needed for removal is the difference in binding energies
between these two nuclides,

S(Z,N)=B(Z N)~ BZ N-—1). (15.2)

An analogous expression holds for the proton separation energy. With
Eqs. (14.3) and (14.4), the separation energy can be written in terms of the
mass cxcesses,

SIZN)=me? —u+ AMZ,N~—1)— AZ,N) (15.3)
or with the numerical values of the neutron mass and the atomic mass unit
S(Z, N) = 807 MeV + A(Z, N — 1) — A(Z, N).

The mass excess is given in Table A6 in the Appendix, and the separation
energy can be computed quickly. The result can be presented in two differ-
ent ways: either Z can be kept fixed, or the neutron excess N — Z can be
kept constant. The first situation is easier to visualize: We start with a
certain nuclide, continue adding neutrons, and record the energy with
which each one is bound. Such a plot is shown in Fig. 15.3 for the isotopes
of cerium, Z « 58. Two cffects are apparent, an even-odd difference and
a closed-shell discontinuity. The even-odd behavior indicates that neutrons
are more tightly bound when N is even than when Nis odd. The same holds
for protons. This fact, together with the empirical observation that all
even-even nuclei have spin zero in their ground states, shows that an extra
attractive interaction occurs when two like particles pair off to z¢ro angular

Title 9
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Input and output simplicity

Nuclear structure contains two important input:
* number of protons
* number of neutrons,

Which could give rise to a lot of outputs:
* Mass

« Separation energy

* Spin

* Charge

« Strange particles from strange quarks

The simple input of the neural networks prediction for the isotopes is in contrast to patient
diagnosis, where the number of inputs are hundredfold
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Fig. 3. Deviations 4(Z, N) = My — My, of learned values of atomic masses from their experi- 0 50 100 150

mental values, projected on a plane perpendicular to the Z-axis. (a) Results fora9(2 4+ 20+ 1)a
net with analog input coding and anzlog output coding (b) Results for a #(16 + 20 + 1), net

with binary input coding and analog output coding. For reference, the range of database masses Fig. 4. Same as fig. 3, cxcept that the error surface is projected on a plane perpendicular to the
is given approximately by Myp = [—92, 128] MeV.

N-axis.
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Orms = [Zw.::;.’ - M,;::)’/n] (5)
”
and the mean deviation
D=>) (MY - M%)n. (6)
4

The sums include the 7 patierns in the training or test sct, as appropriate. For leaming,
Ocms 15 directly proportional to the square root of the cost function (assuming single-
unit analog output coding). The mean error D characterizes the sysiematic overbinding
or underbinding by the model in fitting or prediction.

The performance of ncuralnetwork mass models in the predictive mode is of
paramount interest, since this approach might offer a valuable new tool for inter-
polation between known nuclides, and possibly for modest extrapolation on the fringes
of the existing data base. In table 1| we have collected the results of representative
learning runs on the reduced data base, and of subsequent predictive runs for the re-
maining test nuclides. All training scssions were long cnough that the leaming process
had effectively reached completion. Nevertheless, substantial fluctuations in the cost
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Errors in learmting and prediction of atomic masses by feedforward neural networks of

various types, The measures o .+ and D are respectively the root-mean-square and

mean errors defined by egs. (5) and (6), respectively. Learning refers (0 the reduced

data base of 1719 nuclel, prediction 10 the reserved test samplc of 572. The last two

lines give the error measures for 1wo of the best iraditional mass models2'2722)

which use respectively 1504 and 1593 database nuclei and 47] and 26 adjustable
parameters. Units are MeV.

Net type Leamning error Prediction error
‘7 +H, + + Hy + 0).|P] Trms. D Grms D
#(2 420 4 1)(81) 5254  1.165 5100  1.001
92 4+ 60+ 1)g[241] 4342 1.054 4340 0885
2490+ 1)]361) 10219  5.086 10231  5.041
€24 104+ 104 1).[151) 279 —1.192 2929 .1.242
P16 + 20 + 1).[361) 2.013 1.156 2278 ~0.038
P16 + 10 + 10 + 1)4[291) 1.499 -0.362 2180 -0278
BC16 4+ 10 + 10 + 10 + 1),1401) 1156  0.308 3612 039
BEI6 4 10 4 10 4+ 14 4 1),[449) 1.569 —0.669 2.180 -0.559
Masson-Jinecke fit [471) 0.346 0.014 - -

Maller-Nix fit [26] 0.849 0013 - -
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Tasce 2

Root-mean-square and mean crrors, Oyms and D, made
by feedforward neural networks afier training on the full
data base of 2291 atomic masscs. Units are MeV.

Net type Learning error

‘U4 Hy 4+ H +0):|P] Orms b
“(24 20+ 1),[81) 3384 0313

(2 4 60 + 1)a(241) 1848  0.362
(2410 4 10 4 1)g[151] 1.807 -0.053
b(16 + 20 + 1).[361] 1.919  0.268

P16 4+ 10 + 10+ 104 1),1401) 1008 0005
P16 4+ 10+ 10 4 14 4 1),[449] 0932 -0.049
B(18 4+ 10 4 10 4 10 4 1),[421] 0697 0010

S——
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10C00
* Neural network prediction for
separation energy for:
N-Z=19,
« where the prediction is given by the 5000

dotted line (indicated through the red

arrows)

* Predicted through an (18+18+18)

network 0

0 50 100
N (N odd and Z even)

Fig. 5. Data points for neutron separation energies (in keV) of odd-N-even-Z nuclei of given

:'V — Z are connected by solid lines. Dotted curve shows prediction of N — Z = 19 line by a

(18 + 18 + 18), network with semi-optimized real-number coding schemes for input and output
variables.
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Tape 3

Errors in learning and prediction of ncutron scparation energies for odd-N, even-Z

nucler by neural networks with real-number input and output coding. The quoted

learning (“learn™) errors refer 1o the accuracy of response on the 90% of the database

used in training, and the prediction (“pred™) errors, to that on the remaming 10%.
Values of o/, . are in MeV,

Net type 6!, (learn) @ (leam) 6!p, (pred) d (pred)
(10 + 10 + 9),1209] 0.143 1.63% 0.160 1.8%
(18 + 18 + 18),[684] 0.098 0.89% 0.117 1.6%

"(18 + 38 + 18),[1424) 0.095 0.69% 0.197 1.9%




