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Introduction

Nuclear interaction based on chiral effective field theory 

(EFT), parametrized in terms of low energy constants (LECs)

Uncertainty of the nuclear Hamiltonian (nuclear interaction)
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Introduction

Bayesian inference is an appealing approach for dealing with 

theoretical uncertainties and has been applied in different 

nuclear physics studies
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Bayesian Probability and Sampling/Importance Resampling

• Posterior probability density function (PDF) in Bayes’ theorem :

pr θ 𝒟 ∝ ℒ 𝒟 θ pr(θ)

Likelihood function

(usually not analytical)

Prior

Prior:

a priori hypothesis of parameterization θ (e.g. LECs under uniform 

distribution in a certain range)

Likelihood:

different sources of uncertainty (EFT truncation error, the many-body 

method error, experimental error…) go in here 

• Posterior predictive distribution (PDD):

PDD = yth θ : θ~pr θ 𝒟

𝑦th

P
P

D

Bayesian inference is an excellent framework to incorporate different sources of uncertainty 

and propagate errors to the model predictions.
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Bayesian Probability and Sampling/Importance Resampling

• e.g. The expectation value of certain observable y(θ):

නdθ y θ pr θ 𝒟

• Sampling method:

Markov chain Monte Carlo (MCMC), Sampling/Importance Resampling(SIR)…

MCMC SIR

with θi~pr θ 𝒟
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Predicting new observables

𝑦th

P
P

D

mean(y θi )

Sampling



Applications in Nuclear Theory

There are certain situations where MCMC sampling is not ideal or even becomes 

infeasible:

1) When the posterior is conditioned on some calibration data for which our model 

evaluations are very costly. Then we might only afford a limited number of full 

likelihood evaluations.

2) Bayesian posterior updates in which calibration data is added in several different 

stages. Or in model checking where we want to explore the sensitivity to prior 

assignments. This typically requires that the MCMC sampling must be carried out 

repeatedly from scratch.

3) Even after we get the pdf using MCMC, the prediction of target observables for 

which our model evaluations could be very costly and the handling of a large number 

of MCMC samples becomes infeasible.

MCMC sampling typically requires many likelihood evaluations, which is often 

a costly operation in nuclear theory

MCMC stochastic processes of "walkers"
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Methodology: Sampling/Importance Resampling

The basic idea of SIR is to utilize the inherent duality between samples and 

the density (probability distribution) from which they were generated

This duality offers an opportunity to indirectly recreate a density (that might 

be hard to compute) from samples that are easy to obtain.

θi ~pr θ 𝒟
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Methodology: Sampling/Importance Resampling

Assuming we are interested in the target density h(θ) 

= f(θ) / ׬ f(θ) dθ, the procedure of resampling via 

weighted bootstrap can be summarized as follows:

1) Generate the set {θ𝑖}𝑖=1
𝑛 of samples from a sampling 

density g(θ).

2) Calculate ωi = f(θ𝑖) / g(θ𝑖) for the n samples and 

define importance weights as: q𝑖= ωi / σ𝑗=1
𝑛 ωj.

3) Draw N new samples {θ𝑖
∗}𝑖=1
𝑁 from the discrete 

distribution {θ𝑖}𝑖=1
𝑛 with probability mass q𝑖 on θ𝑖.

4) The set of samples {θ𝑖
∗}𝑖=1
𝑁 will then be 

approximately distributed according to the target 

density h(θ).

weighted bootstrap Intuitively, the distribution of θ* should be good 

approximation of h(θ) when n is large enough. Here 

we justify this claim via the cumulative distribution 

function of θ* (for the one-dimensional case)

Sampling (from “simple” distribution) Importance weights Importance resampling8



Results and Discussion

The joint posterior of LECs sampled with 

S/IR (blue) compared with MCMC sampling 

(orange). The likelihood observables and 

assigned errors are given in the above 

Table. The contour lines indicate 68% and 

90% credible regions.
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seven active model parameters: c1,2,3,4, ෨C3S1, C3S1, CE1

SIR: resample from 2 × 104 samples (uniform distribution) 



Results and Discussion

The PPD obtained from samples of the LECs posterior 

distribution as shown in previous slide. The bivariate 

histograms and the corresponding contour lines denote 

the joint distribution of observables generate by S/IR (blue) 

and MCMC sampling (orange). The marginal distributions 

of the observables are shown in the diagonal panels.
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Application – neutron skin of 208Pb

B. S. Hu*, et al.  “Ab initio predictions link the neutron skin of 208Pb to nuclear forces," Nature Phys. 18, 1196-1200 (2022)

History matching: 34 non-implausible interactions Ab initio calculation of 208Pb 

with 3NF up to E3max = 28  by Takayuki etc.
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Application – neutron skin of 208Pb

B. S. Hu*, et al.  “Ab initio predictions link the neutron skin of 208Pb to nuclear forces," Nature Phys. 18, 1196-1200 (2022)
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Application – nuclear matter  

After history matching, we acquired 106 non-implausible interaction samples (out of 1 billion)

PPD for nuclear matter 

saturation properties 

Bayesian inference with SIR
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History matching as a good precursor to importance resampling



Application – nuclear matter   

~106 Non-implausible 

interaction samples form 

history matching Two PPDs with different PDFs: 

DA=2,3,4 , DA=2,3,4,16 

Note that the same interaction 

samples are used for different 

importance resampling stages. 
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Application – nuclear matter   

The PPD for the EOS around saturation density

Convergence test
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Nuclear matter emulator based on 

Subspace projected coupled cluster

A number of complete 

CC calculations 

serves as subspace 

vector

Nuclear matter equation of state 

for arbitrary interactions  

Different saturation properties

L

Coupled cluster nuclear matter 

calculation in momentum space 

with periodic boundary condition 

Emulator enables 106 times acceleration in this case

eg: for SNM (ccd ~200 CPU-hour)  vs (emulator ~2ms )

Emulating ab initio computations 

of infinite nucleonic matter
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Limitations

1. More complex the likelihood function

2. Target observables are characterized by very small error assignments

neff = 4.4neff = 1589.9

Metrics: effective number of samples 

neff ,as the sum of rescaled importance 

weights, neff = σ𝑖=1
𝑛 (𝑞𝑖/max(𝑞)).
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Summary

• Use the Bayesian method to address the nuclear Hamiltonian (LECs) uncertainty and 

propagate that to predicted observables.

• In our nuclear physics applications, the Bayesian probability updates are done with 

sampling/importance resampling to bypass the computational difficulty.

• Limitations of sampling/importance resampling are discussed.

• Open questions:   better metrics for the SIR

other suitable sampling techniques 
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