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Technology advancements enabled by the discovery and design of new materials

The discovery and design of new materials is also often the bottleneck in advancing 
technology
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ICME for the Discovery and Design of New Materials

Integrated Computational Materials Engineering (ICME): 
Integration of materials information, experiment, and computational tools across

length and timescales.

Processing ↔ Microstructure↔ Properties↔ Performance

Raabe, Dierk, et al. ”Multi-scale modeling in materials science and 
engineering.” (2009) [4].
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Benefits
► Model linkages account for mechanisms 

at various scales

► Reduced cost of time and resources

► Accelerated materials development

Challenge

► Establishing a statistical design 

confidence from deterministic models



Sources of Uncertainty in Materials Modeling
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► Parameter uncertainty

► Noisy/inconsistent experimental data

► Model-form uncertainty

► Sample to sample variability
► Microstructure dictates material behavior

► Randomness creates sample-to-sample variability

► Each sample has a unique true underlying property value due to its unique

microstructure

► There is a single true underlying property of the material
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UQ for materials science and ICME

Objective
Demonstrate a generalized framework for UQ for predictions of material
behavior which considers various sources of uncertainty and is easily
adaptable to important problems in materials modeling.
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Principled approaches for UQ critical to reliably develop and deploy new and 

improved materials within the ICME paradigm.
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Sample-to-Sample Variability Random Effects Model

Model Discrepancy Gaussian Process

Exemplar Demonstration

UQ Bayesian inference

Crystal Plasticity Modeling



Bayesian formalism for statistical inference

Statistical Inference
The goal of recovering information about unknown components, or parameters, θ of a 

probability model from observed data, y, while accounting for associated uncertainty.

The Bayesian Paradigm for Inference
Directly defining and updating beliefs about unknown quantities conditionally

on observed data
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Markov Chain Monte Carlo
MCMC simulation methods are state of the art for generating approximate samples 

from the posterior distributions.
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Statistical models for multiple studies/experiments

Fixed Effect

Study A

Study B

Study C

Random Effects

➢ All studies share a common mean.

➢ Deviations due to sampling variance

𝒚𝒊 = 𝒃𝟎 + 𝒔𝒊 + 𝒆𝒊

𝒚𝒊 = 𝒃𝟎 + 𝒆𝒊
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➢ The means of the studies are distributed 

about the overall mean.

➢ Deviations not strictly due to sampling 

variance

Study A

Study B

Study C

Overall Effect (𝑏0)

Sampling Error Distribution 𝑁 0, 𝜎2

Between-Study Effect Distribution 𝑁 0, 𝜏2

Sampling Deviation

Between-Study Deviation

Nakagawa et. al [5]

𝜃𝑡𝑟𝑢𝑒 𝜃𝑡𝑟𝑢𝑒
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Random Effects Model for UQ in Materials Science

➢ Reflects the natural

structure of a class of 

problems in materials 

modeling and 

simulation 

➢ In materials testing, it is 

not uncommon to see 

experimental deviations 

test-to-test  which 

cannot be attributed 

strictly to sampling 

error.
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Study A

Study B

Study C

Random Effects

➢ The means of the studies are distributed 

about the overall mean.

➢ Deviations not strictly due to sampling 

variance

𝒚𝒊 = 𝒃𝟎 + 𝒔𝒊 + 𝒆𝒊



A hierarchical random effects model DAG
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Effects

► The ’true’ underlying state of nature, θ, is 

the overall effect.

DAG: directed acyclic graph. Arrows → direction of conditional dependence
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A Hierarchical Random Effects Structure
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Effects

► The ’true’ underlying state of nature, θ, is 

the overall effect.

► The data are collected from samples that, 

due to heterogeneity, have been 

generated under a different state, θ[s], 

which are random effects.

DAG: directed acyclic graph. Arrows → direction of conditional dependence
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A Hierarchical Random Effects Structure
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Effects

► The ’true’ underlying state of nature, θ, is 

the overall effect.

► The data are collected from samples that, 

due to heterogeneity, have been 

generated under a different state, θ[s], 

which are random effects.

► 𝜃 𝑠 connected to 𝜃 by a MVN distribution

𝜃 𝑠 ∼ 𝑀𝑉𝑁𝐷 𝜃, Λ−1

DAG: directed acyclic graph. Arrows → direction of conditional dependence
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Model for the Data

► The model for the observations

► 𝑦 𝑠 = 𝑚 𝜃 𝑠 + 𝑒

A Hierarchical Random Effects Structure
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DAG: directed acyclic graph. Arrows → direction of conditional dependence

13

The Ohio State University



Model for the Data

► The model for the observations

► 𝑦 𝑠 = 𝑚 𝜃 𝑠 + 𝑒

► 𝑒 ∼ 𝑀𝑉𝑁𝑁 0, Ψ−1

A Hierarchical Random Effects Structure
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DAG: directed acyclic graph. Arrows → direction of conditional dependence
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A Hierarchical Random Effects Structure
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Model for the Data

► The model for the observations

► 𝑦 𝑠 = 𝑚 𝜃 𝑠 + 𝑒

► 𝑒 ∼ 𝑀𝑉𝑁𝑁 0, Ψ−1

► With added model discrepancy term

► 𝑦 𝑠 = 𝑚 𝜃 𝑠 + Δ + 𝑒

► Δ ∼ 𝑀𝑉𝑁𝑁(0, Γ)

DAG: directed acyclic graph. Arrows → direction of conditional dependence
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A Hierarchical Random Effects Structure
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Prior Modeling for Λ

► Wishart Distribution: probability distribution 

on positive-definite matrices

► 𝚲 ∼ 𝑾𝒊𝒔𝒉𝑫(𝑽𝒐, 𝒗𝒐)

► Complex relationship between 

hyperparameters and features of 

the distribution

► A flexible alternative is to model 

a decomposition of the precision 

matrix instead

DAG: directed acyclic graph. Arrows → direction of conditional dependence
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A Hierarchical Random Effects Structure
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Prior Modeling for Λ

► Wishart Distribution: probability distribution 

on positive-definite matrices

► Λ ∼ 𝑊𝑖𝑠ℎ𝐷(𝑉𝑜 , 𝑣𝑜)

► Complex relationship between 

hyperparameters and features of 

the distribution

► A flexible alternative is to model 

a decomposition of the 

covariance matrix instead

► Λ = diag 𝑡 𝑅diag 𝑡
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Exemplar Problem: Crystal Plasticity
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Crystal Plasticity (CP) Modeling: Used to predict mechanical behavior of 

polycrystalline materials such as the stress-strain response and texture evolution under 

specific modes of deformation.

► CP models vary greatly in complexity

► High-fidelity models appealing for scientific inquiry

► too expensive  for UQ

► Reduced-order, homogenized, mean-field models well-suited for UQ

► Often have some systematic model discrepancy

► Inference and prediction important in this setting
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Phenomenological VPSC CP Model

The evolution of the CRSS with  
deformation is described in VPSC 

by the  Voce Law
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Tome & 
Lebensohn [6]
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Ƹ𝜏𝛼 = 𝜏0
𝛼 + 𝜏1

𝛼 + 𝜉1
𝛼Γ 1 − exp −Γ

𝜉0
𝛼

𝜏1
𝛼



Inference Problem

Voce Parameters: θ := (τ0, τ1 , ξ0, ξ1)

Constraints: C(θ) = (τ0, τ1, ξ0 −ξ1) > 0

mimic hardening behavior for the room-temperature deformation of copper
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VPSC – missing physics for the elastic region of deformation →model discrepancy

Simulated calibration data from the physics-based 
elasto-viscoplastic FFT model



Importance of Accounting for Model Discrepancy

If model discrepancy ignored- bias is 

introduced in the inference and consequently 

in predictions
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*Kennedy and O’Hagan (2001) [7] laid out a 

hierarchical framework for doing inference 

for reduced order models with discrepancy.

Analysis of the VPSC model with model 

discrepancy not accounted for.
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𝑦 = 𝑚 𝜃 + Δ + 𝑒



Gaussian Processes to Model Discrepancy

A Gaussian Process (GP) can be used to define a prior over functions and is 

characterized by a mean function and covariance function

∆ ∼ GP (µ, c)

Δ may be represented with a prior mean function 𝜇 𝑥 = 0

Δ 𝑥1 , … , Δ 𝑥𝑁 ∼ 𝑀𝑉𝑁𝑁(𝟎, 𝐶)

𝐶 = Cov Δ 𝑥1 , … , Δ 𝑥𝑁
𝑇 , Δ 𝑥1 , … , Δ 𝑥𝑁

𝑇

The covariance between the process at any two points is related to the covariance 

function,

𝑐 𝑥𝑖 , 𝑥𝑗 = Cov Δ 𝑥𝑖 , Δ(𝑥𝑗))

Covariance structure controls correlation scale and smoothness of stochastic process

Prior Modeling
Careful choice of the covariance structure is needed to specify a sufficiently informative 

prior process for the discrepancy Δ

Denielle Ricciardi
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Prior Modeling of the Discrepancy

Example covariance function, the squared exponential,

w = .025, σ2 = 100

w = .25, σ2 = 10

w = .25, σ2 = 100

39

The Ohio State UniversityDenielle Ricciardi

UQ for Materials Modeling

23

The Ohio State University

Hyperparameters
► Length scale, w , & variance, σ 2

w = .025, σ2 = 10



Prior Modeling of the Discrepancy

Stationarity
Covariance function depends only on the distance between inputs and is 

independent of their relative location.

stationary non-stationary
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Example covariance function, the squared exponential,
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Discrepancy Prior for the VPSC CP Model
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Prior knowledge about ∆

VPSC expected to capture the plastic

region nearly perfectly and the elastic 

region not at all



Elastic Region
Model discrepancy is the greatest at x = 0 &

decreases to 0 at the elastic-plastic transition

➢ Constrained non-stationary covariance 

function
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Discrepancy Prior for the VPSC CP Model

Plastic Region
Model discrepancy is expected to remain

constant at nearly 0 for the plastic region

➢ Stationary squared-exponential

covariance function

Elastic Plastic

Entire Domain
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Prior knowledge about ∆

VPSC expected to capture the plastic

region nearly perfectly and the elastic 

region not at all



Prior Modeling of 𝜃
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The degree to which the prior choice 

affects posterior uncertainty depends on

► How informative the prior is

► How much information the data contain 

about the unknown parameters
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Prior Modeling of 𝜃
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Materials Applications

► Much information available about

random effects, 𝜃 𝑠 , 𝑠 = 1, … , 𝑆
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Prior Modeling of 𝜃
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Materials Applications

► Much information available about

random effects

► Information propagated in hierarchy

to θ is quite small
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Prior Modeling of 𝜃
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Materials Applications
► Sensitivity to the choice of 𝜋(𝜃)

► Diffuse priors chosen for 𝜃
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Bivariate Kernel Density Estimates

1.2 × 105 samples produced, 2 × 104 discarded as burn-in. Adaptive algorithm used to 

overcome high parameter correlations

Representative Random Effect Overall Effect
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Marginal Posterior Contours
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Insight: The highest reduction in uncertainty will be achieved by testing more

samples rather than further trying to decrease the measurement noise for each 

single trajectory.



Posterior Uncertainty Propagated to Model Output

The point-wise posterior mean, the VPSC model

evaluated at the posterior mean parameter 

values and the mean discrepancy are shown 

with an inset showing the elastic region.
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Assume discrepancy 
not present

Assume discrepancy 
present



Summary

A framework for UQ for materials modeling was demonstrated in a CP example.

UQ accounting for:

► Parameter uncertainty

► Observation error

► Sample-to-sample variability

► Model discrepancy

Denielle Ricciardi

UQ for Materials Modeling

34

The Ohio State University

Implications for ICME

► Reliable use of fast reduced-order, 

phenomenological (etc.) models

► True material properties are inferred from 

variable experimental data

► Uncertainty can be propagated in model 

linkages for processing → performance 

predictions

► Supports reliable design and discovery of 

new materials
Raabe [4].



Thank You
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Supplemental Slide I: When to Include Discrepancy

Include when...
► The model is missing physics, 

resulting in systematic discrepancy 

between the model output and the 

observations

► There is strong prior knowledge 

about the misfit between the model 

and true process

► Identifiability

∆ (x) = ζ (x) −m (x , θ) .

May exclude when...

► No systematic discrepancy is 

expected

► The model is flexible enough to fit the 

data

► The model is empirical in nature, 

where parameters do not have 

physical significance since the 

parameter estimates will be strongly 

biased and HPIs may not cover the 

true parameter values
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Supplemental Slide II: Modeling Discrepancy

Observations of the physical system,yn, at independent variable inputs,

x = {x1, · · · , xN}, are centered around some true value, ζ(xn), with independent

Gaussian observation errors, en,

yn = ζ (xn) + en, n = 1, · · · , N.

Assume some model of the physical system, m(·), which accepts a vector of input 

parameters θ and is evaluated at variable inputs x = {x1, · · · , xN},

m (x, θ) .

We can link the model to the true system, by incorporating the discrepancy, ∆ ,

ζ (x) = m (x, θ) + ∆(x).

Relating the model to the observations:

yn = m (xn, θ) + ∆( xn) + en, n = 1, · · · , N
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Supplemental Slide III: Toy Problem for Discrepancy

Toy Example for Discrepancy

No Discrepancy With Discrepancy
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Supplemental Slide IV: Priors

Priors
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Supplemental Slide V: Constitutive Model
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ሶ𝜀𝑝 = ෍

𝛼

𝑚𝛼 ሶ𝛾𝛼 = ሶ𝛾0 ෍

𝛼

𝑚𝛼
𝑚𝛼 ∶ 𝜎𝛼

𝜏0
𝛼

𝑛

𝛼: slip systems
𝜏0: initial threshold stress
𝑚: Schmid tensor

ሶ𝜀𝑝: deviatoric plastic strain rate
𝜎: stress

ሶ𝛾𝛼: local shear rate on slip system 𝛼
ሶ𝛾0: reference shear rate

𝑛: rate-sensitivity exponent



Supplementary Slide VI: Inference and Prediction

Inference Prediction

Denielle Ricciardi

UQ for Materials Modeling

42

The Ohio State University


