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Ab initio predictions link the neutron skin of 208Pb to nuclear forces 
by B. Hu, W.G. Jiang, T. Miyagi, Z. Sun, A. Ekström, cf, G. Hagen, J.D. 
Holt, T. Papenbrock, S.R. Stroberg, I. Vernon, Nature Phys. 18, 1196 (2022)


Emergence of nuclear saturation within Δ-full chiral effective field theory 
by W.G. Jiang, cf, T. Djärv, G. Hagen, arXiv:2212.13203


Emulating ab initio computations of infinite nucleonic matter 
by W.G. Jiang, cf, T. Djärv, G. Hagen, arXiv:2212.13216

Presenting (mainly) work published in: 2



Uncertainty quantification for ab initio 
methods based on effective field theory (EFT)
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▸ Model the strong interaction at low-energy

- At the most fundamental level, the strong interaction  

is described by Quantum Chromodynamics (QCD);

- At low energies, quarks condense into hadrons; 

- Atomic nuclei can supposedly be described with relevant  

low-energy degrees of freedom—nucleons and pions—and residual interactions;

- Effective field theories (EFTs) offer a systematic description of this physics.

Scientific goals in ab initio nuclear theory 4
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is described by Quantum Chromodynamics (QCD);

- At low energies, quarks condense into hadrons; 

- Atomic nuclei can supposedly be described with relevant  

low-energy degrees of freedom—nucleons and pions—and residual interactions;

- Effective field theories (EFTs) offer a systematic description of this physics.

▸ Parameter estimation and model checking

- Infer the parameters (low-energy constants = LECs) of chiral EFT from low-energy, 

nuclear data: E.g. NN scattering observables, few-nucleon or other low-energy 
observables.


- Also other parameters might be of interest. E.g., 

- Can we infer the breakdown scale of the EFT? 

- Can we rigorously test the EFT model assumptions?

▸ Predictive power

- Predict scientifically relevant nuclear observables with  

quantified uncertainties.

Scientific goals in ab initio nuclear theory 4
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▸Apply Bayes’ theorem

Learning from data via Bayes

▸ The prior encodes our knowledge about parameter values before analyzing the data


▸ The likelihood is the probability of observing the data given a set of parameters


▸ The marginal likelihood (or model evidence) provides normalization of the posterior.


▸ The posterior is the inferred probability density for the parameters.

Posterior
Likelihood Prior

Marginal likelihood

p(α |𝒟, I) =
p(𝒟 |α, I) ⋅ p(α | I)

p(𝒟 | I)
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▸Apply Bayes’ theorem

Learning from data via Bayes

▸ The prior encodes our knowledge about parameter values before analyzing the data


▸ The likelihood is the probability of observing the data given a set of parameters


▸ The marginal likelihood (or model evidence) provides normalization of the posterior.


▸ The posterior is the inferred probability density for the parameters.

Posterior
Likelihood Prior

Marginal likelihood

p(α |𝒟, I) =
p(𝒟 |α, I) ⋅ p(α | I)

p(𝒟 | I)

{y(α) : α ∼ p(α |𝒟, I)}

▸ Predictions for “future” data, modeled with y(𝜶), are described by the 
posterior predictive distribution (ppd)

▸ We will also introduce full ppd:s {y(α) + δy : α ∼ p(α |𝒟, I), δy ∼ p(δy)}
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A. Ekström, et al. Phys. Rev C 97, 024332 (2018)
W. Jiang, et al. Phys Rev C 102, 054301 (2020)

EFT promises a connection with QCDχ

Weinberg, van Kolck, Kaiser, Bernard, Meißner, Epelbaum, 
Machleidt, Entem, … 


Ĥ |ψi⟩ = Ei |ψi⟩

Ĥ(α) = ̂T + ̂V(α)

Ab initio modeling of nuclear systems using 𝛘EFT6



low-energy 
constants (LECs) 

= parameters

A. Ekström, et al. Phys. Rev C 97, 024332 (2018)
W. Jiang, et al. Phys Rev C 102, 054301 (2020)

EFT promises a connection with QCDχ

Weinberg, van Kolck, Kaiser, Bernard, Meißner, Epelbaum, 
Machleidt, Entem, … 
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low-energy 
constants (LECs) 

= parameters

A. Ekström, et al. Phys. Rev C 97, 024332 (2018)
W. Jiang, et al. Phys Rev C 102, 054301 (2020)

parameters inferred from data. 
— parametric uncertainty


EFT expansion truncated 
— model/truncation error


many-body solver relies on 
approximations:  
— many-body error

EFT promises a connection with QCDχ

Weinberg, van Kolck, Kaiser, Bernard, Meißner, Epelbaum, 
Machleidt, Entem, … 


Ĥ |ψi⟩ = Ei |ψi⟩

Ĥ(α) = ̂T + ̂V(α)

Ab initio modeling of nuclear systems using 𝛘EFT6



▸ Getting to know your errors

- Means, variances, and covariances of EFT truncation, many-body 

method, emulator errors;

- PDF functional forms;

- Model calibration and validation


▸ Sampling PDFs without tears

- Mimic costly simulators with efficient and accurate emulators;

- Hamiltonian MC, sampling / importance resampling, …


▸ Technologies to be explored

- Model mixing, experimental design, …

Current UQ frontiers in ab initio nuclear theory 7
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method, emulator errors;

- PDF functional forms;

- Model calibration and validation


▸ Sampling PDFs without tears

- Mimic costly simulators with efficient and accurate emulators;

- Hamiltonian MC, sampling / importance resampling, …


▸ Technologies to be explored

- Model mixing, experimental design, …

Current UQ frontiers in ab initio nuclear theory

See, e.g., Frontiers in Physics volume on  
“Uncertainty Quantification in Nuclear Physics” 
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▸ An emulator mimics the simulator output at a reduced 
computational cost: 





▸ A useful emulator is fast and accurate.

▸ Keep track of the emulator uncertainty.

y(α) ≈ ỹ(α) + δỹ

▸ Emulators can be non-intrusive (data based)

▸ Neural networks, Gaussian processes, etc

▸ Or intrusive (model based)

▸ Translating a high-fidelity model to a low-fidelity one

▸ Vast literature on model-order reduction (MOR); 

see, e.g., Melendez et al. (2203.05528) with many refs.
Many talks at this workshop.  
E.g., Furnstahl, Ekström, Becker, Odell (model-based)  
and several others for data-based emulators



Eigenvector continuation emulators 10

continuous parameter

H(α) = H0 + αH1

The key insight is that while an eigenvector resides in a linear 
space with enormous dimensions, the eigenvector trajectory 
generated by smooth changes of the Hamiltonian matrix is well 
approximated by a very low-dimensional manifold. 

D. Frame, et al.  Phys. Rev. Lett. 121, 032501 (2018)



Time(emulation) << Time(simulation) 11

Jiang et al., arXiv 2212.13216  
& arXiv 2212.13203 

Kondo et al., in preparationKönig et al., PLB 810, 135814 (2020)



Iterative history matching

Selected references: 
 
I. Vernon, et al. (Bayesian Anal., 2010) 


I. Vernon, et al. (BMC Systems Biology, 2018)


B. Hu et al (Nature Phys. 2022)
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Approximate Bayes
▸ Bayesian linear methods (only means and variances) can be 

very useful


▸ Easier to claim implausibility than 
to quantify likelihood 

   versus    


▸ Define implausibility measure  
(using only means and variances)


▸ History matching:  
Iteratively remove regions  
in which 

ΘNI(α) p(𝓓 |α, I) ≡ ℒ(α)

ΘNI(α) = 0

<latexit sha1_base64="XQle2lpKxXJQ5FLMVxUrlOdcdm0="></latexit>

⇥NI(↵) =

⇢
0 implausible
1 non-implausible



▸Climate modeling  
(Williamson 2013, Edwards 2019) 


▸Ecosystem ecology  
(Raftery, 1995)


▸Epidemiology   
(Andrianakis 2015, 2016, Vernon 2022)


▸Galaxy formation  
(Vernon 2010, 2014)


▸Oil reservoir modelling  
(Craig 1995, 1996, Cumming 2009)


▸Systems biology  
(Vernon 2018)


▸Nuclear physics  
(Hu 2022, Jiang 2022, Elhatisari 2022)

Iterative history matching 14



1. At iteration j: Construct or refine emulator(s) for the model predictions across 
the current non-implausible volume  . 
Choose a rejection strategy based on implausibility measures for the 
chosen set  of informative observables.

𝒟j

𝒵j

Iterative history matching strategy 15

𝒟j

α1

α2



1. At iteration j: Construct or refine emulator(s) for the model predictions across 
the current non-implausible volume  . 
Choose a rejection strategy based on implausibility measures for the 
chosen set  of informative observables.

𝒟j

𝒵j

2. Define a set of model runs over the current NI volume  using a space-filling 
design of sample values for the (active) parameter inputs . 

𝒟j
{α}j

Iterative history matching strategy 15

𝒟j

α1

α2



1. At iteration j: Construct or refine emulator(s) for the model predictions across 
the current non-implausible volume  . 
Choose a rejection strategy based on implausibility measures for the 
chosen set  of informative observables.

𝒟j

𝒵j

2. Define a set of model runs over the current NI volume  using a space-filling 
design of sample values for the (active) parameter inputs . 

𝒟j
{α}j

3. The implausibility measures are then calculated over , using the emulators, 
and implausibility cutoffs are imposed. Define a new (smaller) non-
implausible volume  which should satisfy  ⊂ .

𝒟j

𝒟j+1 𝒟j+1 𝒟j

Iterative history matching strategy 15

𝒟j

α1

α2

𝒟j+1

α1

α2



1. At iteration j: Construct or refine emulator(s) for the model predictions across 
the current non-implausible volume  . 
Choose a rejection strategy based on implausibility measures for the 
chosen set  of informative observables.


2. Define a set of model runs over the current NI volume  using a space-filling 
design of sample values for the (active) parameter inputs . 


3. The implausibility measures are then calculated over , using the emulators, 
and implausibility cutoffs are imposed. Define a new (smaller) non-
implausible volume  which should satisfy  ⊂ .


4. Unless (a)  computational resources are exhausted, or (b) all considered points 
in the parameter space are deemed implausible, we: 


i. include any additional informative observables in the considered set , and return to step 1. 


5. If 4(a) is true we generate a large number of acceptable runs from the final NI 
volume , sampled according to scientific need. 

𝒟j

𝒵j

𝒟j
{α}j

𝒟j

𝒟j+1 𝒟j+1 𝒟j

𝒵j+1

𝒟final

Iterative history matching strategy 16



▸The implausibility measure does not use the full likelihood, but just means and variances 
 

                          . 

 
where  is the collection of outputs that are being considered and  is the 
combined variance of observational, model, method, and emulator uncertainties.

I2
M(α) ≡ max

zi∈𝒵

𝔼 [ f̃i(α)] − zi
2

Var [ f̃i(α) − zi]
𝒵 Var[…]
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where  is the collection of outputs that are being considered and  is the 
combined variance of observational, model, method, and emulator uncertainties.

I2
M(α) ≡ max

zi∈𝒵

𝔼 [ f̃i(α)] − zi
2

Var [ f̃i(α) − zi]
𝒵 Var[…]

▸ Large values of  imply that we are highly unlikely to obtain acceptable matches 
between model output and observed data at input . We consider a particular input  as 
implausible if 
 
                                                     , 
 
where we may choose , appealing to Pukelheim’s three-sigma rule, or a ladder of 
cutoffs for the first, second, etc., maximum.

IM(α)
α α

IM(α) > cM

cM = 3

▸Surviving the implausibility cutoff does not necessarily imply that  is very good; just non-
implausible! 

α

Implausibility measure 17



Non-implausible domain

The parameter region emerging from history matching is where we 
expect the posterior distribution to reside. 
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Emergence of nuclear saturation

Emergence of nuclear saturation within Δ-full chiral effective field theory 
by W.G. Jiang, cf, T. Djärv, G. Hagen, arXiv:2212.13203


Emulating ab initio computations of infinite nucleonic matter 
by W.G. Jiang, cf, T. Djärv, G. Hagen, arXiv:2212.13216
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Emergence of nuclear saturation within Δ − χEFT

▸  with explicit  isobar. 


▸ Extensive error model  
(EFT truncation, method convergence, finite-size errors).


▸ Iterative history-matching for global parameter search. Study ab 
initio model performance, and provide a large (>106) number of non-
implausible samples.


- Implausibility criterion involves only  observables.


▸ Bayesian posterior predictive distributions for nuclear matter 
properties.


- Importance resampling with two different data sets:  
  and   (see the talk by Weiguang).


▸ Relies on sub-space projected coupled cluster (SP-CCD) emulators 
for infinite nuclear matter systems at different densities.

χEFT Δ

A ≤ 4

𝒟A=2,3,4 𝒟A=2,3,4,16
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History matching waves
▸ np S- and P-wave phase shifts at  

Tlab=1, 5, 25, 50, 100, 200 MeV

21
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Model output for EOS parameters

6

FIG. 4. (Color online) Predicted mean (blue lines) and 95%
confidence interval (light blue regions) for energy per neu-
tron/particle using GP and compared with predictions of
quadratic spline. The hyperparameters of the GP are given
by l = 0.25 fm�3 and � = 100. The black diamonds denote
the training data (SPCC calculations with �NNLOGO(394)
interaction) of the GP.

symmetric nuclear matter around the saturation point.
Ideally one would like to include the density ⇢ parame-
ter in the eigenvector continuation scheme and build an
emulator that works for di↵erent LECs and at arbitrary
densities. However, changing the density leads to di↵er-
ent discretizations of the momentum space lattice and
one would therefore need to work out matrix elements
connecting di↵erent reference states and lattices.

Fortunately, we are not completely ignorant about the
properties of the EOS of nuclear matter. The E(⇢)/N
(E(⇢)/A) should be continuous smooth curve when ⇢

changes. Namely, the energies per nucleon at di↵er-
ent densities are correlated and we do not need many
points to obtain su�cient information about the EOS.
In this work, we construct SPCC emulators for both
PNM and SNM at five di↵erent densities ranging from
0.12 to 0.20 fm�3. We choose to study this density re-
gion simply because the empirical saturation density is
around 0.16 fm�3 [11, 95]. The nuclear matter EOS is
then obtained at di↵erent densities within this range by
using Gaussian processes (GP) [96] as the interpolation
method. We choose the radial basis function (RBF) as
the correlation function to ensure the smoothness of the
EOS. The hyperparameter (correlation length l) of the
GP is learned from a validation data set which contains
50 interaction samples that are generated by the same
history matching process mentioned in Sec. II C. The

PNM and SNM correlation lengths studied from the val-
idation set are 0.297 fm�3 and 0.259 fm�3, respectively.
We take a more conservative value l = 0.25 fm�3 for both
PNM and SNM in this work so that we do not overesti-
mate the correlation between di↵erent densities.
Figure 4 shows the GP predictions for the EOS of PNM

and SNM (using the �NNLOGO(394) interaction [43])
compared to the results obtained using spline interpola-
tion. We observe that the performance of both meth-
ods is equally good within the interpolation region. The
major advantage of using GP instead of simple poly-
nomial interpolation is that it is infinitely di↵erentiable
under the RBF kernel thus observables such as L and
K can easily be evaluated. For a given interaction
that has a saturation point within the density range
⇢ 2 [0.12, 0.20] fm�3 we can thereby extract all satura-
tion properties from the specified Gaussian process and
its derivative (first and second).

E. History matching

In this work we use an iterative history matching ap-
proach [44, 60–62] with selected experimental data to
study and reduce the huge parameter space of our �EFT
interaction model. For each wave of history matching we
need to establish a quantitative criterion that determines
if a parametrization ~↵ yields acceptable (or at least not
implausible) model predictions when confronted with the
selected set of observations Z. We introduce the individ-
ual implausibility measure

I
2

i (~↵) =
|Mi(~↵)� zi|2

Var (Mi(~↵)� zi)
, (7)

which includes the squared di↵erence between the model
prediction Mi(~↵) and the observation zi for observable
i from the target set Z. The total variance in the de-
nominator of Eq. (7) assumes independent errors and is
therefore a sum of variances that in our case includes ex-
perimental, model, method, and emulator errors. Unless
di↵erently specified we use the maximum of the individ-
ual implausibility measures to define the constraint

IM (~↵) ⌘ max
zi2Z

Ii(~↵)  cI , (8)

where the default choice is cI ⌘ 3.0 inspired by Pukel-
heim’s three-sigma rule [97].
History matching proceeds by reducing the parame-

ter space iteratively. In each wave one removes regions
that are deemed implausible by failing the constraint in
Eq. (8) . A visualization of this process is shown in
Fig. 5. We first use a space-filling design such as Latin
Hypercube Sampling to generate well-spaced interaction
samples in the input parameter domain. Then we use
fast modeling or emulation to compute the implausibil-
ity measures and apply the maximum implausibility con-
straint. The remaining non-implausible interaction sam-
ples are kept and defines the non-implausible region for

22
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See the talk by Weiguang for step 2: 
History matching + Importance Resampling = Bayesian posterior



▸ The concept of tension in science relies on statements of uncertainties


▸ It is natural to strive for accuracy in theoretical modeling; but actual 
predictive power is more associated with quantified precision.


▸ Ab initio methods + 𝝌EFT + Bayesian statistical methods in combination with 
fast & accurate emulators is enabling precision nuclear theory. 


▸ We have developed a unified ab initio framework to link the physics of NN 
scattering, few-nucleon systems, medium- and heavy-mass nuclei up to 
208Pb, and the nuclear-matter equation of state near saturation density.


▸ Challenges: 

▸ Getting to know our uncertainties;

▸ How to define implausibility when conditioning on many outputs;

▸ Have identified a need to revisit the leading (and subleading) orders of 
𝝌EFT (from explorations of the model discrepancy).

Summary and outlook 23
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Recent UQ progress in 𝝌EFT modeling
From light…
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Recent UQ progress in 𝝌EFT modeling

I. Svensson et al PRC (2022)

S. B. S. Miller et al. 
PRC (2023)
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Recent UQ progress in 𝝌EFT modeling

in preparation

Predicting oxygens

68%-90% credibility regions

B. Hu et al Nature Phys. 
(2022)

History matching

B. Hu et al  
Nature Phys. (2022)

P. Maris et al PRC (2022)

Truncation errors/Model checking

S. R. Stroberg et al PRL (2021)

Bayesian linear regression

… to heavy

C. Drischler et al PRL,PRC (2020)

Nuclear matter EoS (correlated errors)

W.G. Jiang et al  
Frontiers Phys., 
+ arXiv (2022)

(importance resampling)
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Infinite nuclear matter: computational approach

‣ Discrete momentum basis states 
  


‣ Cubic lattice in momentum space, 



‣ , with 


‣ Results should converge with 
increasing 

ψk(x) ∝ eikx

(kx, ky, kz)

kn =
2πn
L

n = 0, ± 1, ± 2,… ± nmax

nmax

‣ Periodic boundary conditions 
  ψk(x + L) = ψk(x)

‣ The box size (L) and the nucleon 
number (N) controls the density ( )


‣ Computational challenge ( ):


‣ PNM: 1458 orbits with 66 neutrons


‣ SNM: 2916 orbits with 132 nucleons 

ρ

nmax = 4

(See G.Hagen et al., 2014)  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In order to construct the sub-space projected target
Hamiltonian H(~↵}) we solve for the left and right CC
ground-states for a set of Nsub training Hamiltonians
H(~↵1), · · · , H(~↵Nsub), and subsequently project H(~↵})
and the identity matrix onto this sub-space giving,

he 0|H(~↵})| i= h�0|(1 + ⇤0)eXH(~↵})|�0i, (4)

he 0| i= h�0|(1 + ⇤0)eX |�0i, (5)

where eX = e
�T 0

+T . With Eqs. (4) and (5) one can easily
acquire the ground-state energy for the nuclear matter
system by solving a Nsub ⇥ Nsub generalized eigenvalue
problem. Note that the Nsub subspace vectors should not
be linear dependent to avoid numerical instability when
solving the generalized eigenvalue problem.

Another important aspect of the SPCC method is to
select an appropriate set of training points ~↵ to construct
the subspace. Recall that�NNLO has 17 di↵erent LECs,
thus we are trying to pick a series of LECs from a 17-
dimensional hyperspace. To ensure the selected vectors
are a good representation of the hyperspace, we first ap-
ply history matching to restrict the LECs ranges and
then use Latin hypercube sampling within this domain
to generate both the training points ~↵1, · · · , ~↵Nsub and
the target LECs ~↵}. This choice of ~↵ is reasonable since
the SPCC emulator is expected to be more accurate when
the target point is close to the training points. More de-
tails about the history matching procedure can be found
in Sec. II E. The training vectors used in this work are
shown in Fig. 1. It can be seen that the subspace train-
ing vectors still cover a very broad LECs range after five
waves of history matching iteration.

B. Emulators for a single LEC

Fig. 2 shows the calculated energy per neutron (E/N)
and energy per nucleon (E/A) for PNM and SNM, re-
spectively. The SPCC predictions using three or five
subspace vectors are compared with full space CCD re-
sults for a wide range of the low-energy constant C1S0

(the remaining LECs are kept fixed). As we can see, us-
ing Nsub = 5 training points chosen in a small region,
the SPCC method already accurately reproduces the full
space CCD calculations over a large range for the C1S0

LEC. As expected, if we reduce the number of training
points to Nsub = 3, the SPCC predictions of SNM start
to deviate more from the exact solutions in the case of
large exptrapolations, while the predictions for PNM still
remain precise over the whole range considered. For this
test case we used only 14 (28) neutrons (nucleons) for
PNM and SNM, respectively.

C. Small-batch voting

When building the SPCC emulator for symmetric nu-
clear matter and pure neutron matter calculations using

132 nucleons and 66 neutrons, respectively, one su↵ers
from a persistent spurious state problem. We find that
there are multiple eigenstates of the Nsub ⇥ Nsub ma-
trix that have much lower eigenvalues than the corre-
sponding full-space CCD result. The interpretation of
these spurious states is not clear, but we consider them
to be unphysical and would like to remove them from
the spectrum. The exact reason for the appearance of
these states is not yet fully understood, but is a conse-
quence of several factors: (i) the SPCC Hamiltonian is by
construction non-Hermitian and the variational theorem
does not apply; (ii) for increasing number of nucleons
(132 nucleons and 66 neutrons in our case) the level den-
sity increases which more easily leads to the occurence
of these states, and (iii) the approximate treatment of
the left-state might not be appropriate for certain LEC
combinations for which the interaction become less per-
turbative.
Recall that CC theory fulfills a bivariational theorem

and the physical solution is a stationary point with re-
spect to variations of the CC amplitudes. Whether the
bivariational property of CC theory also holds for the
SPCC remains to be shown, but it is reasonable to as-
sume that it holds as long as the subspace is su�ciently
large. In this section we will show how we can use the
bivariational property to e�ciently identify the physical
solution within the SPCC spectrum using a method we
call small-batch voting.

FIG. 3. (Color online) Relative errors between SPCC pre-
dictions and exact CCD calculations for PNM (top) and
SNM(bottom). (a), (b): without small-batch voting. (c),
(d): with small-batch voting.

Fig. 3(a)(b) illustrates the relative errors (ESPCC �
ECCD)/|ECCD| between emulator predictions and exact
CCD calculations with 66 (132) neutrons (nucleons). The
emulator predictions are chosen as the SPCC state with

SPCC SPCC w. small-batch voting

|Ψ(α⊚)⟩ = eT(α⊚)) |Φ0⟩ ≈
Nsub

∑
i=1

c⋆
i |Ψi⟩

SPCC with small-batch voting
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ground-states for a set of Nsub training Hamiltonians
H(~↵1), · · · , H(~↵Nsub), and subsequently project H(~↵})
and the identity matrix onto this sub-space giving,
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+T . With Eqs. (4) and (5) one can easily
acquire the ground-state energy for the nuclear matter
system by solving a Nsub ⇥ Nsub generalized eigenvalue
problem. Note that the Nsub subspace vectors should not
be linear dependent to avoid numerical instability when
solving the generalized eigenvalue problem.

Another important aspect of the SPCC method is to
select an appropriate set of training points ~↵ to construct
the subspace. Recall that�NNLO has 17 di↵erent LECs,
thus we are trying to pick a series of LECs from a 17-
dimensional hyperspace. To ensure the selected vectors
are a good representation of the hyperspace, we first ap-
ply history matching to restrict the LECs ranges and
then use Latin hypercube sampling within this domain
to generate both the training points ~↵1, · · · , ~↵Nsub and
the target LECs ~↵}. This choice of ~↵ is reasonable since
the SPCC emulator is expected to be more accurate when
the target point is close to the training points. More de-
tails about the history matching procedure can be found
in Sec. II E. The training vectors used in this work are
shown in Fig. 1. It can be seen that the subspace train-
ing vectors still cover a very broad LECs range after five
waves of history matching iteration.

B. Emulators for a single LEC

Fig. 2 shows the calculated energy per neutron (E/N)
and energy per nucleon (E/A) for PNM and SNM, re-
spectively. The SPCC predictions using three or five
subspace vectors are compared with full space CCD re-
sults for a wide range of the low-energy constant C1S0

(the remaining LECs are kept fixed). As we can see, us-
ing Nsub = 5 training points chosen in a small region,
the SPCC method already accurately reproduces the full
space CCD calculations over a large range for the C1S0

LEC. As expected, if we reduce the number of training
points to Nsub = 3, the SPCC predictions of SNM start
to deviate more from the exact solutions in the case of
large exptrapolations, while the predictions for PNM still
remain precise over the whole range considered. For this
test case we used only 14 (28) neutrons (nucleons) for
PNM and SNM, respectively.

C. Small-batch voting

When building the SPCC emulator for symmetric nu-
clear matter and pure neutron matter calculations using

132 nucleons and 66 neutrons, respectively, one su↵ers
from a persistent spurious state problem. We find that
there are multiple eigenstates of the Nsub ⇥ Nsub ma-
trix that have much lower eigenvalues than the corre-
sponding full-space CCD result. The interpretation of
these spurious states is not clear, but we consider them
to be unphysical and would like to remove them from
the spectrum. The exact reason for the appearance of
these states is not yet fully understood, but is a conse-
quence of several factors: (i) the SPCC Hamiltonian is by
construction non-Hermitian and the variational theorem
does not apply; (ii) for increasing number of nucleons
(132 nucleons and 66 neutrons in our case) the level den-
sity increases which more easily leads to the occurence
of these states, and (iii) the approximate treatment of
the left-state might not be appropriate for certain LEC
combinations for which the interaction become less per-
turbative.
Recall that CC theory fulfills a bivariational theorem

and the physical solution is a stationary point with re-
spect to variations of the CC amplitudes. Whether the
bivariational property of CC theory also holds for the
SPCC remains to be shown, but it is reasonable to as-
sume that it holds as long as the subspace is su�ciently
large. In this section we will show how we can use the
bivariational property to e�ciently identify the physical
solution within the SPCC spectrum using a method we
call small-batch voting.

FIG. 3. (Color online) Relative errors between SPCC pre-
dictions and exact CCD calculations for PNM (top) and
SNM(bottom). (a), (b): without small-batch voting. (c),
(d): with small-batch voting.

Fig. 3(a)(b) illustrates the relative errors (ESPCC �
ECCD)/|ECCD| between emulator predictions and exact
CCD calculations with 66 (132) neutrons (nucleons). The
emulator predictions are chosen as the SPCC state with

Physical states are stable w.r.t. subspace variations
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1-parameter example: np scattering (3P2)
▸ The “observations” are the 3P2 phase shift at 6 different energies.

▸ Our theoretical model is the solution of the L-S equation for the np system. 


▸ Below, we fix :s and vary  (green lines).ci C3P2 ∈ [−1.5, − 0.5]

Most choices for  are deemed implausible when confronted with data.C3P2



Projected implausibility measure

Non-implausible!

IP(α0) = min
α1,…∈𝒟α

IM(α0, α1,…)

Implausible!

▸ Sampling the :s we study 
: the projected 

implausibility measure

ci
IP(C3P2)

cM=3



Ab initio computations of  208Pb
Ab initio predictions link the neutron skin of 208Pb to nuclear forces 
by B. Hu, W.G. Jiang, T. Miyagi, Z. Sun, A. Ekström, cf, G. Hagen, J.D. Holt, T. 
Papenbrock, S.R. Stroberg, I. Vernon, Nature Phys. 18, 1196 (2022)
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Ab initio computations of 208Pb
We start from a NNLO(394) chiral Hamiltonian. Order by order results provide estimates 
of the model errors. Pion-nucleon couplings are from a Roy-Steiner analysis. 

Approximately solve the Schrödinger equation in HF basis using Coupled-Cluster, IMSRG, 
and MBPT methods. Comparisons and domain knowledge provide estimates of the method 
errors. 

3NFs are captured using the NO2B approx. Large emax (=14) and E3max (=28) spaces. 
For 208Pb, IR extrapolation adds only ~2% to the skin thickness and ~6% to the energy. 

EC-emulators for observables with  . Validated and trusted to within 0.5%


 
Nuclear matter computed using CCD(T) with estimates of the method error from systematics. 
Conflated with estimates for the model error using a multitask Gaussian Process.

Δ

A ≤ 16

G. Hagen, et al. Rep. Prog. Phys. 77, 096302 (2014)

H. Hergert, et al. Phys Rep.  621  165 (2016)

T. Miyagai, et al. Phys. Rev. C 105, 014302 (2022)

C. Drischler, et. al. Phys. Rev. Lett. 125, 202702 (2020)

S. König, et al. Phys. Lett. B 810, 135814 (2020)

A. Ekström and G. Hagen Phys. Rev. Lett. 123, 252501 (2019) 

W. Jiang, et al. Phys Rev C 102, 054301 (2020)

M. Hoferichter et al, Phys. Rev. Lett. 115, 192301 (2015)
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Ab initio predictions link the skin of 208Pb to nuclear forces 

History Matching

Calibration

Validation

Prediction: small skin thickness 0.14-0.20 fm 
in mild (1.5 sigma) tension with PREX.

Electroweak 
Hadronic 

Electromagnetic 
Gravitational Waves

Importance resampling

Inspect ab initio model  
and error estimates

Find 34 non-implausible 
interactions

Confronted with A=2-16 
data + NN scattering 
information

We explore 109 
different interaction 
parameterizations

B. Hu et al (Nature Phys. 2022)
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Neutron skin thickness
Constraints on Nuclear Symmetry Energy Parameters

J. Lattimer (2023)

B. Hu et al (Nature Phys. 2022)
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▸ Tune C1S0 while adjusting cE to maintain saturation


▸ Study the effect on various observables. Note L & δ1S0(50)

Why does ab initio predict thin skins? 35




