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Electron Ion Collider (EIC)
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The Electron-Ion Collider
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CoM energy √se-p ~ (20-140) GeV

Total estimated cost ~ $1.6-2.6B

polarized electron - polarized protons/ions

How does the mass of the nucleon arise? 

How does the spin of the nucleon arise? 

What are the emergent properties of 
dense systems of gluons? 

EIC @BNL: 
a precision machine to study the “glue” that binds us all

World-wide interest in EIC, thousands of users and 
hundreds of institutions involved
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EIC Schedule

Magnet landed in the partially 
assembled flux return and 

outer HCAL (in 2021)

ePIC Collaboration recently formed (previously 
ECCE proto-collaboration 

selected as reference detector)

R. Ent, AI4EIC workshop, October 2022
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Opportunities for (Detector Design) Optimization!
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https://indico.bnl.gov/event/16586/sessions/5668/#20221010
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The ePIC Detector
An (outdated) illustration of 
the central detector

● A large-scale experiment with an integrated 
detector that extends for ~ ± 35 m to 
include the central, far-forward, and 
far-backward regions.

● To enable the EIC physics we need a 
central detector that is: hermetic and 
asymmetric 

● From fundamental physics, we know that 
different types of particles interact 
differently with matter and we need to 
develop specific devices to identify them  



AI-assisted design
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The AI-assisted design is a good example of how AI can be folded into the SW planning as it 
embraces all the main steps of the simulation/reconstruction/analysis pipeline 

● Leverages heterogeneous computing

● Benefits from rapid turnaround time 
from simulations to analysis of 
high-level reconstructed observables

● The ePIC SW stack offers multiple 
features that facilitate AI-assisted 
design (e.g., modularity of simulation, 
reconstruction, analysis, easy access 
to design parameters, automated 
checks) 

helps steering the design (and eventually fine-tune it) 

can capture hidden correlations among design parameters
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● 3 Types of Objectives 

○ Intrinsic detector performance (resolutions, 
efficiencies) for each sub-detector — Tracking, 
calorimetry, PID — noisy

○ Physics-performance — Multiple physics 
channels, equally important in the EIC physics 
program 

○ Costs (e.g., material costs, provided a reliable 
parametrization)

● Objectives can be competing with each other 

○ E.g. Better detector response come with higher 
costs; better resolutions may imply lower 
efficiencies; etc.

Why Multi-Objective Problem?

For illustrative purposes

detector design solutions

Hot take: every optimization problem is fundamentally a multi-objective optimization problem.

hypervolume
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Weighted sum with errors
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1. Robust fitting procedure in 
fine-grained phase-space 

2. Propagate uncertainties 

(sum in bins of P) (Average objective in a η bin)

Fine-grained analysis

3.    Do this for several objectives

Example for tracking system(more details in C. Fanelli et al (ECCE Coll.), 
NIMA Vol 1047, Feb 2023, 167748)

https://www.sciencedirect.com/science/article/pii/S0168900222010403
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Checks 
performed  

(more details in C. Fanelli et al (ECCE Coll.), 
NIMA Vol 1047, Feb 2023, 167748)

https://www.sciencedirect.com/science/article/pii/S0168900222010403
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Constraints

Example of constraints implemented for the tracking system 
(more details in C. Fanelli et al (ECCE Coll.), NIMA Volume 1047, Feb 2023, 167748)

https://www.sciencedirect.com/science/article/pii/S0168900222010403
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Analyzing the results
  Can take a snapshot any time 

during evaluation
2 Updated Pareto Front at time t

At each point in the Pareto front 
corresponds a design 3

Analysis of Objectives (momentum resolution, angular resolution, KF efficiency)

1

4
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MOO Pipelines: MOGA
● Engage with Open Source projects 

● In a first exploratory phase*, we used MOGA (NSGA-II) 

CF et al., NIM-A Vol 1047, Feb 2023, 167748

arXiv:2205.09185

Multi-Objective Genetic Algorithm
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MOO Pipelines: MOBO
● As the project evolved, so did our understanding of the design space and the possible 

ranges for each design parameter. 

● With MOBO, we aim to determine a more accurate approximation of the Pareto front 

Multi-Objective Bayesian Optimization

(e.g., Ax: adaptive 
experimentation platform 

supported by Meta AI)

 See 2nd AI4EIC workshop, 
https://indico.bnl.gov/e/AI4EIC 

● Using Ax/BoTorch and novel 
qNEHVI acq. function with 
improved computational 
performance arXiv:2105.08195 

● Currently in the process of 
generalizing the design problem 
and increase its complexity

https://indico.bnl.gov/e/AI4EIC


Navigate the Pareto front
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The whole idea of the AI-assisted design is 
that of determining trade-off optimal 
solutions in a multidimensional design 
space driven by multiple objectives
 

For an interactive visualization:
https://ai4eicdetopt.pythonanywhere.com

C.Fanelli et al, NIM A, 2023, 167748, 
arXiv:2205.09185

https://ai4eicdetopt.pythonanywhere.com/


Visualization
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● The interactive visualization employs several Python 
and JavaScript libraries/packages to visualize the 
results from the optimization

○ Plotly-dash - click&play interface; interactive navigation; 
expanded dashboard 

○ JSRoot — JSRoot project allows reading binary and JSON 
ROOT files in JavaScript; drawing of different ROOT classes 
in web browsers; reading TTree data; using node.js used to 
visualize the detector geometry which is stored in GDML 
format

○ Pandas: read source data (Pareto front solution)  

○ MySQL DB: most convenient DB that is used alongside Flask 
based applications. Meta-data like location of Geometry files, 
Location of parameters file are stored in the form of a 
database 
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Workflow utilized in the ECCE proposal (2022)

AI-optimization
Parallelization GEANT4-based 

simulations

new ePIC 
software-stack

Parallelization

*Future implementations will explore a scalable and distributed AI-assisted design framework
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ePIC SW Features Streamlining AI-Assisted Design 

● Design:

○ Geometry implementation via data source makes transparent the coupling of AI to the software 
stack design parameters 

○ Modularity of geometry description 

○ Automated features (checking overlaps)

● General Properties:

○ Code repository, continuous integration, containerization 

○ Open, simple, self-descriptive data formats (flat data model in general allows flexibility for AI/ML 
applications)  

○ Support for truth information 

○ Use of ML-supported packages (e.g., ACTS, includes ONNX plugin)

○ JANA2 with integrated Python interface  

○ etc.



AI-assisted design

17*AI/ML can potentially enter in all the steps of the design pipeline

Event level

Particle level

See examples (1) and (2)

See example (3)



(1) ML-based PID for Shower Imaging 
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[1] N. Apadula, et al. "Monolithic active pixel sensors on cmos technologies." arXiv preprint arXiv:2203.07626 (2022).
[2] C. Peng, ML Particle Identification with Measured Shower Profiles from Calorimetry, AI4EIC 2nd workshop (2022)

Imaging Calorimeter 

Hybrid Concept 
Monolithic Silicon Sensors AstroPix 

Scintillating fibers embedded in Pb (Pb/ScFi similar to 
GlueX Barrel Ecal) 

“Sandwiched” 6 layers of AstroPix and 5 layers of Pb/ScFi 
(~1X0) followed by a large chunk of Pb/ScFi 

Total thickness ~43 cm (~21 X0) 

Large amount of data (3D shower imaging) 

ML with shower imaĀinĀ siĀnificantly improves  e/π rejection compared to traditional 
E/p cut — impact on DIS
Separation oÿ γ’s ÿrom π0 at hiĀh momenta (40 GeV/c) and precise position 
reconstruction oÿ γ’s (<1 mm at 5 GeV) — DVCS and γ physics 
TaĀĀinĀ final state radiative γ’s ÿrom nuclear/nucleon elastic scatterinĀ at low x to 
benchmark QED internal corrections
ImprovinĀ PID, providinĀ a space coordinate ÿor DIRC reconstruction 

9 layers
6 layers

red: imaging detector and  ML
blue, green and the black: other technology 

and traditional cut-based strategy

ML model: Sequential CNN + MLP

shower examples

https://indico.bnl.gov/event/16586/contributions/68785/attachments/43773/73846/AI4EIC_Chao.pdf


(2) ML-based PID for Cherenkov
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[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, Mach. Learn.: Sci. Technol., 1.1 (2020): 015010
[2] C. Fanelli, "Machine learning for imaging Cherenkov detectors." JINST 15.02 (2020): C02012.

charged track ● Need for faster and accurate simulations and 
reconstruction  

● Complex hit patterns (DIRC is the most complex),  
sparse data, response vs kinematics   

● DeepRICH: same reconstruction performance of 
best reconstruction algorithm with ~4 orders of 
magnitude speed-up in inference time on GPU

● Possibility to learn at the event-level rather than at 
the track/particle level. Can generate hit pattern.

DIRC at GlueX is instrumental ÿor PID 

 (x,y,t) hit pattern photon yield vs track angle 

(P∈[0,5] GeV/c) DeepRICH

Cherenkov detectors will be the 
backbone oÿ PID at EIC 

Cherenkov photons

Charged track



(3) Deeply Learning DIS

20[1] M. Diefenthaler, et al. “Deeply Learning DIS Kinematics”  arXiv:2108.11638, EPJC 82, 1064 (2022)
[2] M. Arratia, et al., “Reconstructing the kinematics of DIS with DL”, NIM-A 1025 (2022): 166164

DIS ÿundamental 
process @EIC

(Born level)

● Use of DNN to reconstruct the kinematic observable Q2  and x in the study 
of neutral current DIS events at ZEUS and H1 experiments at HERA.

● The performance compared to electron, Jacquet-Blondel and the 
double-angle methods using data-sets independent of training

● Compared to the classical reconstruction methods, the DNN-based 
approach enables significant improvements in the resolution of Q2 and x

DIS beyond the Born approximation has a complicated 
structure which involve QCD and QED corrections

Example in one specific bin 



AI4EIC community 
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● AI will be an integral part of the EIC science and to work in this direction, a dedicated AI Working Group 
(AI4EIC) has been established 2 years ago within the EICUG (https://www.eicug.org) 

● AI4EIC serves as an entry point to AI applications and organizes workshops, tutorials, hackathons, 
challenges, etc.  

● AI4EIC fosters connections between ePIC and the Data Science / Computer Science community 

https://eic.ai

● Workshops —2 workshops, 200+ participants each (https://eic.ai/workshops)— serve as a body of essential 
knowledge for AI4EIC, and produce proceedings, annual report, journal special issues.

● Educational activities and outreach are aimed at disseminating AI in the EIC community 

○ Several tutorials (https://eic.ai/community) 

○ Hackathon events are built around specific challenges for EIC and help identify strategies, architectures and 
algorithms that will benefit the EIC physics program (https://eic.ai/hackathons) 

○ Additionally, AI4EIC is committed to establishing educational events (e.g., schools) designed to enhance AI 
and ML proficiency within the EIC community  (https://eic.ai/community), (https://eic.ai/ai-ml-references)

https://www.eicug.org/
https://eic.ai
https://eic.ai/workshops
https://eic.ai/community
https://eic.ai/hackathons
https://eic.ai/community
https://eic.ai/ai-ml-references


AI4EIC 
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https://eic.ai

https://doi.org/10.5281/zenodo.7197023https://eic.ai/community

● Discussion from this 
workshop contributed 
to NSAC LRP

● Paper in preparation

(2022)

Forthcoming AI4EIC workshop from Nov 28 to Dec 1, 2023 — CUA, Washington, D.C.

https://eic.ai/workshops

https://arxiv.org/abs/2303.02579
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Conclusions
● Next generation QCD experiments like ePIC are being designed during the AI revolution: 

○ AI can assist the design and R&D (two phases, slightly different needs) of complex experimental systems

■ providing more efficient design (considering multiple objectives) 

■ utilizing effectively the computing resources needed to achieve that.     

● EIC will be one of the first large-scale experiments (involved hundreds of institutions world-wide) to be 
designed with the support of AI 

○ The reference detector has been already designed taking advantage of a multi-objective optimization approach and a 
complex parametrization of its design which takes into account constraints.

○ The optimization framework utilizes accurate full simulations based on Geant4, identify the tradeoffs in the Pareto 
front (and reduce the total computational budget to converge to Pareto).    

● This workflow can be further extended for ePIC (and Detector-2) 

○ More realistic effects in the simulation and reconstruction techniques 

○ A larger system of sub-detectors, e.g, detectors like the dRICH — increased complexity, e.g.

■ O(100) pars, 4-8 objectives, O(10) constraints

■ Room for ideas, e.g., explore physics-inspired acquisition functions  — exciting work ahead!!


