AIL/ML + Data Scilence tools
for detector design at the EIC

.

= J@on (1)

@ Exploring the Nature of Matter

5/26/2023

Cristiano Fanelli (and Authors in the slides)
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rgiectron Ion Collider (EIC)

ElC @BNL How does the mass of the nucleon arise?
a precision machine to study the “glue” that binds us all '

polarized electron - polarized protons/ions

Electron
Injection

Injector
Linac

Polarized

Electron
/ . Source
ions
Electron Electrons
Injector

(RCS)

What are the emergent properties of

) dense systems of gluons?
(Polarized)

lon \
Sourci
B\( \ Alternating
\) /\ Gradient
Synchrotron
World-wide interest in EIC, thousands of users and

Jefferson Lab Total estimated cost ~ $1.6-2.6B hundreds of institutions involved

€
" Exploring tho Nat




rEEC Schedule

FYl9  FY20 Fy2l FY22 | FY23 FY24 | FY25 (FFY26 " NEY27 S ERF 8 RN IS0

, Critical * * 2AV‘(
ve start A rove ploj
st cDow | o) o | o3 | Construction Phase ’P p(pmp‘, Smence Phase
\ Dec 2019 Jun 2021 Jan2024 | Apr2025 Ap! 202 Apr 2034
Concepousl Emvy D44 Ear!y 04
g Compltion Completon
Apr2031  Apr2032
Infrastructure Design

Convenuonal Construction
—_

Accelerator
Systems

Concsptua|
es!gn
Research & Developrient
Procurement, Fabrication, Installation & Test ZZZZA Full RF Power Buildout
7 PP 77

t//// Full RF Power Buildout
b il
D &'
|
Project
I Detector |
| for
I starts at CD-2

| Notona FYI9  FY20 FY2l Fr22 | 23 FYa4 | FY25 | FY26 | FY27
Schedule
2nd |R and Gz2neric
Datector
Detector #2 R&D

Commissioning & Pre-Ops

|! ‘
Magnet landed in the partially

assembled flux return and
outer HCAL (in 2021)

ePIC Collaboration recently formed (previously
ECCE proto-collaboration

Key (A) Actual Level 0 o Clltlcal
selected as reference detector)

Milestones Path /] Contingency

e Opportunltles for (Detector Design) Optlmlzatlon' 3

' Explorng the Natu

Detector-2 ePIC accelerator



https://indico.bnl.gov/event/16586/sessions/5668/#20221010

An (outdated) illustration of

IThe ePIC Detector

e Alarge-scale experiment with an integrated
detector that extends for ~+ 35 m to
include the central, far-forward, and
far-backward regions.

e To enable the EIC physics we need a
central detector that is: hermetic and
asymmetric

_"‘ b
different types of particles interact +ve charged tracks ‘ :
differently with matter and we need to | ve charged tracks . <

e From fundamental physics, we know that

develop specific devices to identify them

y | . BECAL Hit Energy (MeV)
-
/ . EHCAL Hit Energy (MeV)




|_AI—assisted design _l

The Al-assisted design is a good example of how Al can be folded into the SW planning as it
embraces all the main steps of the simulation/reconstruction/analysis pipeline

N
/
; .,rr:.
!
_T |
1‘:
S .Jl"‘
Design Parameters Objectives
Detector Reconstructed
Simulation Features

helps steering the design (and eventually fine-tune it)

oo
@ can capture hidden correlations among design parameters
Jefferson Lab

" Exploring tho Naturo of ater




my Multi-Objective Problem? _I

Hot take: every optimization problem is fundamentally a multi-objective optimization problem.

e 3 Types of Objectives

o Intrinsic detector performance (resolutions,
efficiencies) for each sub-detector — Tracking,

calorimetry, PID — noisy hypervolume
|

o  Physics-performance — Multiple physics
channels, equally important in the EIC physics

program

o Costs (e.g., material costs, provided a reliable
parametrization)

./:|‘
Objective Space

e Objectives can be competing with each other

o E.g. Better detector response come with higher
costs; better resolutions may imply lower For illustrative purposes
efficiencies; etc.




Flne_qralned analyS]_S Weightedlsumwitherrors

25<M<35,6.0<p<8.0GeVic

1. Robust fitting procedure in [ _ NE - z
fine-grained phase-space . : ,

2. Propagate uncertainties

2

o

=

(V]

=

. 2pTplp 3
U < T=—"— £
Zp Wp N, 7

(sum in bins of P) (Average objective in a n bin) L)
(]

| Zp Wpn* R(f)/),r/ -g,’

D R =5 ) 8

n 5 Zp Wpn =

3. Do this for several objectives

P/ —

(more details in C. Fanelli et al (ECCE Coll.),
NIMA Vol 1047, Feb 2023, 167748)

Example for tracking system



https://www.sciencedirect.com/science/article/pii/S0168900222010403

rEBecks "

New Design Point
D e r f O r m e d Engineering

Constraints.

Check Strong Penalize Heavily
Constraints

GEANT4

unstable with GEANT4 model
Overlap Checks

Penalize Heavily

HP('I-Cluster Start sim with LI L e
issue. timeout Omit the design

Compute
performance Analyse Rise Alarm
metric in,bp ’ Performance & Fits Do not carry to next
and ‘7’ bins. call
Evaluate Fit

quality

Compute objectives and pass to optimizer
(more details in C. Fanelli et al (ECCE Coll.),

NIMA Vol 1047, Feb 2023, 167748)



https://www.sciencedirect.com/science/article/pii/S0168900222010403

Constraints constraint

soft constraint: sum of residuals
o S disks |t _ pi ¢ pi in sensor coverage for disks;
ESTEAL diaks min{ Z M s |R"“’—R'".I } sensor dimensions: d = 17.8
7 d d (30.0) mm

strong constraint: minimum
EST/FST disks Zne1 — Zn >= 10.0 cm distance between 2 consecutive
disks

minfp,x) m=1,---,M
st. gx)<0, j=1,---,J
h(x)=0, k=1,---,K
N

U .
xiLSx,-Sx =1,

i

sensor coverage for every layer;
sensor strip width: w = 17.8 mm

; 277 sggi 277 sagi
Sagltla layers "",n{ sagitta _ sagitta
w w

Jl} soft constraint: residual in

strong constraint: minimum
Tns1 —1p >=5.0cm distance between yuRwell barrel
layers

Example of constraints implemented for the tracking system
(more details in C. Fanelli et al (ECCE Coll.), NIMA Volume 1047, Feb 2023, 167748)

-
FST/EST e
Disks . /\\A‘

Barrel Si il

Layer



https://www.sciencedirect.com/science/article/pii/S0168900222010403

Analy21nq the reSUltS At each point in the Pareto front

corresponds a design

Can take a snapshot any time Updated Pareto Front at time t
during evaluation

it s, Solation B me URWELL3 Sagitta [TS3

Solution D

2000 4000
N of Evaluations

40 resolution 0 -35<n<-3 0. 4 2<n<-15 KF Efficiency > g e,

£ 3 ’ ? i P
-

X -

- SGi & q
% + ECCE Simulation 2021

+ ECCE Simulation 2021 3
Ll L T Ll .
+ ECCE Ongoing R&D

+ ECCE Ongoing R&D S S BT
O PGV 2

¢ -05<n<0 05<n<1

d0 [mrad]

S
e
0
2 0 2, 0 &0 10 g5 20 T 10 g5 20 5 S 105 20 T 105
Frack b [GeVR] Frack p 1GeVR] 1 Frack p [GeVR] Hrack  [GeVR]

1005, 20 0 105
Frack p1Ge Vel Frackp [GeVe]

e, S b T T
L g
e

2<n<25

KF efficiency
KF efficiency

15<n<2
rack K Gevh Yk Floevd) 2

" Exploring the Naturo o Mator



MOO PielineSZ MOGA CF et al., NIM-A Vol 1047, Feb 2023, 167748

arXiv:2205.09185

Description Value

e Engage with Open Source projects ieen e

# Objectives M 3

. * # Offspring ‘ 30(50)
e In afirst exploratory phase*, we used MOGA (NSGA-II) # dnin Pl | T .
" Ch,j; e((}lo;(‘:% . same as offspring
Population Size

Non-dominated Crowding

; : The Evolution Cycls
distance sortlng Initial population creation (N_pop) -
Rank & sort - NSGA2 (Objs) Genetic Evolution of designs

] le, B BHHHBF*“

Py 1P, [Py [P [Ps [Pe [P [Ps TP, [P [P )
2 Parents create Offspring I
[P P, [P I [P [P [P, [P, [P

[PTP TP TP P TP TP 1P [Py [Pl
(81 [8; [8 [P [B: [Pe [P: [Ps [P [PuoPuf
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AN AR AW
!

(e

(2% L) [ O )

[ |- =
AAEEEEEE

Healthy Design points

Q(t)

Inject baseline Genes
Faster convergence

Offspring E— > < Rejected

(@)

Design A Design B - - Yields Pert T the design.
[ BpDDDEDE : FamdAll Gonaid Sk - e
Ll )\

~ Cross over & 3 i i >° Comprehensive checks
m’ ZS" ) . ensures feasibility of design
i \ £

[ [e, [P [P [e- [P, - [oy ] j;_Front-?,

Mutation ]@% 9 7 ~O—-_ Front-2

Offspring —(O-Front-1
% [, % T8 [ [ v oo TRy ] 2
(b) (c)




| MOO Pipelines: MOBO Il

e As the project evolved, so did our understanding of the design space and the possible
ranges for each design parameter.

e With MOBO, we aim to determine a more accurate approximation of the Pareto front

e Using Ax/BoTorch and novel

e gNEHVI acq. function with
MODEL i i
CANDIDATE improved computational
PELECTION performance arXiv:2105.08195

o :
objectives e  Currently in the process of

DATASET generalizing the design problem

design parameters | ML!Iti-Obje.ct!ve ] oI N | and increase its complexity
Bayesian Optimization

-

objectives

acquisition (e.g., Ax: adaptive
experimentation platform
supported by Meta Al)

‘ PARETO FRONT d
UPDATE OBJECTIVES AT See 2nd AI4EIC workshop,

oo a - - DESIGN CANDIDATE https://indico.bnl.gov/e/AI4EIC
efferson bab - ' d



https://indico.bnl.gov/e/AI4EIC

rﬁévigate the Pareto front

C.Fanelli et al, NIM A, 2023, 167748,
arXiv:2205.09185

Multi Objective Bayesian Optimization GEANT4 Visualization of the design

The whole idea of the Al-assisted design is
that of determining trade-off optimal
solutions in a multidimensional design
space driven by multiple objectives

® Batch Number @ Pareto Front from surrogate

For an interactive visualization:
https://ai4eicdetopt.pythonanywhere.com

Click on petals for finer evaluations Design Parameters Table

Performance of the Chosen Design Solution Berameterhiame Rerameten Ve
Angle of cone [deg] 25.00

Radius of uRwell-1 [cms] 32.47
ZE-TTL [ems] 171.00
2 F-TTL [ems] 157.60
ZEST-1 [oms] 40.39
2 EST-3 [oms] 85.09
2 FST-1 [ems] 35.03
2 FST-3 [cms] 83.78

2 FST-5 [ems] 131.27

= Momentum res ® Theta res
® Phires KF InEff

2 Tracklé) [GeV/cﬁ5

Jefferson Lab 13


https://ai4eicdetopt.pythonanywhere.com/

rVisualization

Exploring the Naturo of Mattr

e The interactive visualization employs several Python
and JavaScript libraries/packages to visualize the

Visualizing — results from the optimization

o

Plotly-dash - click&play interface; interactive navigation;
expanded dashboard

JSRoot — JSRoot project allows reading binary and JSON
ROOT files in JavaScript; drawing of different ROOT classes
in web browsers; reading TTree data; using node.js used to
visualize the detector geometry which is stored in GDML
format

Pandas: read source data (Pareto front solution)

MySQL DB: most convenient DB that is used alongside Flask
based applications. Meta-data like location of Geometry files,
Location of parameters file are stored in the form of a
database

14



IWorkflow utilized in the ECCE proposal (2@22)_|

/

Al-optimization
Parallelization GEANT4-based
simulations
Al Suggested
Design points n eW e P I C
software-stack

Evaluation of the

Design points l

Sort solutions .
; § Fit ObJCCthCS in n & p bins

Approximate Pareto front
| Compute Ob_] ectives and memc/

Suggest next set of design points
*Future implementations will explore a scalable and distributed Al-assisted design framework 15 I




I ePIC SW Features Streamlining AI-Assisted Design I

e Design:

o Geometry implementation via data source makes transparent the coupling of Al to the software
stack design parameters

o Modularity of geometry description
o Automated features (checking overlaps)
e General Properties:
o Code repository, continuous integration, containerization

o Open, simple, self-descriptive data formats (flat data model in general allows flexibility for Al/ML
applications)

o  Support for truth information

o Use of ML-supported packages (e.g., ACTS, includes ONNX plugin)

& o JANAZ2 with integrated Python interface I
Jefferson Lab o etC 1 6

Exploring the Nature of Mattor




|_AI—assisted design _l

-.tl“
A(ary
.Jl“
Design Parameters Objectives
\ See example (3)
J Eventievel
AN
Detector Reconstructed |||
Simulation Features Particle level

See examples (1) and (2)

*Al/ML can potentially enter in all the steps of the design pipeline 17 I



PID for Shower Imaging

(1) ML-based

Imaging Calorimeter

Hybrid Concept
Monolithic Silicon Sensors AstroPix

Scintillating fibers embedded in Pb (Pb/ScFi similar to
GlueX Barrel Ecal)

“Sandwiched” 6 layers of AstroPix and 5 layers of Pb/ScFi
(~1XO0) followed by a large chunk of Pb/ScFi

Total thickness ~43 cm (~21 X0)

Large amount of data (3D shower imaging)

ERY

Jefferson Lab [2] C. Peng,

" Exploring the Naturo

shower examples

Electron Shower Sample Pion Shower Sample

PbWQ, sim.

Pb/Sc meas.
(PHENIX)
W/ScFi sim
(sPHENIX)
£e=295%
10.0
p (GeV/c)
ML model: Sequential CNN + MLP : imaging detector and ML
, green and the : other technology

and traditional cut-based strategy

ML with shower imaging significantly improves e/ rejection compared to traditional
E/p cut—impact on DIS

Separation of y's from 1° at high momenta (40 GeV/c) and precise position
reconstruction of y's (<1 mm at 5 GeV) — DVCS and y physics

Tagging final state radiative y's from nuclear/nucleon elastic scattering at low x to
benchmark QED internal corrections

Improving PID, providing a space coordinate for DIRC reconstruction

[1] N. Apadula, et al. "Monolithic active pixel sensors on cmos technologies." arXiv preprint arXiv:2203.07626 (2022).

, AI4EIC 2™ workshop (2022) 18


https://indico.bnl.gov/event/16586/contributions/68785/attachments/43773/73846/AI4EIC_Chao.pdf

r?é) ML-based PID for Cherenkov

Cherenkov detectors will be the
DIRC at GlueX is instrumental for PID backbone of PID ot EIC

photon yield vs track angle

(P<[0,5] GeVic)

—
2
5
3]
E
[_‘

C. Fanelli, and J. Pomponi.
Machine Learning: Science and
Technology 1.1 (2020): 015010.
injected .
heR’
I I

1
7o £ o o B

‘7,
‘P‘G(ﬁx Y

Classification

DeepRICH: same reconstruction performance of Output
best reconstruction algorithm with ~4 orders of
magnitude speed-up in inference time on GPU

5{}5;3 J] e Need for faster and accurate simulations and croir |

(WEL reconstruction $dgnt space
Cherenkov photons 4!’" ) ) .

:iH e  Complex hit patterns (DIRC is the most complex), S

:ﬂp.? ’ sparse data, response vs kinematics Glassier

——
‘H!
I
e <
\
\
\
L
[

e Possibility to learn at the event-level rather than at
the track/particle level. Can generate hit pattern.

reconstructed

[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, Mach. Learn.: Sci. Technol., 1.1 (2020): 015010
[2] C. Fanelli, "Machine learning for imaging Cherenkov detectors." JINST 15.02 (2020): C02012. L 9




®DA, Bin 2

I_(3) Deeply Learning DIS Fomee n onespeciic o

l(l_i;) (Born level) l'(k?’)
DIS fundamental Jp— 26| ®EL Binz | @B, Bin2
process @EIC /v /W=(d) )
> H(P)
) = Fidion

DIS beyond the Born approximation has a complicated
structure which involve QCD and QED corrections

e Use of DNN to reconstruct the kinematic observable Q% and x in the study R
of neutral current DIS events at ZEUS and H1 experiments at HERA. TR TR

e The performance compared to electron, Jacquet-Blondel and the
double-angle methods using data-sets independent of training

e Compared to the classical reconstruction methods, the DNN-based
approach enables significant improvements in the resolution of Q? and x

ables in b Vof z and Q?
defined as the 3 of the
and log(Q?) -

[1] M. Diefenthaler, et al. “Deeply Learning DIS Kinematics” arXiv:2108.11638, EPJC 82, 1064 (2022)
[2] M. Arratia, et al., “Reconstructing the kinematics of DIS with DL”, NIM-A 1025 (2022): 166164




I_AI4EIC Community https://eic.ai g [

e Al will be an integral part of the EIC science and to work in this direction, a dedicated Al Working Group
(AI4EIC) has been established 2 years ago within the EICUG (https://www.eicug.orq)

e AI4EIC serves as an entry point to Al applications and organizes workshops, tutorials, hackathons,
challenges, etc.

e AI4EIC fosters connections between ePIC and the Data Science / Computer Science community

e \Workshops —2 workshops, 200+ participants each (hiips:/eic.ai/workshops)— serve as a body of essential
knowledge for AI4EIC, and produce proceedings, annual report, journal special issues.

e [Educational activities and outreach are aimed at disseminating Al in the EIC community

o  Several tutorials (hifps://eic.ai/community)

o  Hackathon events are built around specific challenges for EIC and help identify strategies, architectures and
algorithms that will benefit the EIC physics program (hiips://eic.ai/hackathons)

o  Additionally, AI4EIC is committed to establishing educational events (e.g., schools) designed to enhance Al
and ML proficiency within the EIC community (hitps://eic.ai/community), (hitps://eic.ai/ai-ml-references)

VA



https://www.eicug.org/
https://eic.ai
https://eic.ai/workshops
https://eic.ai/community
https://eic.ai/hackathons
https://eic.ai/community
https://eic.ai/ai-ml-references

AT4EIC https//eicai |

https://eic.ai/workshops

e Workshop: (2022)

~ Total of 220 registered participants (also last year, >200!)
o - .
https://eic.ai } 2\ o Very good attendance in person!
i £l o o MLl
\g - 6 sessions (15 conveners, 40+ speakers)
54E I C j

Design
Theory/Exp connections (morning + afternoon
sessions)

Recon & PID

Infrastructure (+ Panel Discussion)
Streaming

e Tutorials:

o . MOBO

o OmniFold

o  MLFlow . :

o GNN > "
https://eic.ai/community https://doi.org/10.5281/zenodo.797023

hz g
;ﬁw z}ab Forthcoming AI4EIC workshop from Nov 28 to Dec 1, 2023 — CUA, Washington, D.C. 22 I


https://arxiv.org/abs/2303.02579

I Conclusions I

Next generation QCD experiments like ePIC are being designed during the Al revolution:
o Al can assist the design and R&D (two phases, slightly different needs) of complex experimental systems
m  providing more efficient design (considering multiple objectives)
m utilizing effectively the computing resources needed to achieve that.

e EIC will be one of the first large-scale experiments (involved hundreds of institutions world-wide) to be
designed with the support of Al

o  The reference detector has been already designed taking advantage of a multi-objective optimization approach and a
complex parametrization of its design which takes into account constraints.

o The optimization framework utilizes accurate full simulations based on Geant4, identify the tradeoffs in the Pareto
front (and reduce the total computational budget to converge to Pareto).

e This workflow can be further extended for ePIC (and Detector-2)
o  More realistic effects in the simulation and reconstruction techniques
o  Alarger system of sub-detectors, e.g, detectors like the dRICH — increased complexity, e.g.

m  O(100) pars, 4-8 objectives, O(10) constraints

m Room for ideas, e.g., explore physics-inspired acquisition functions — exciting work ahead!! 23 I

Exploring the Nature of Mattor



