

The Short Baseline Neutrino Program

Minerba Betancourt, Fermilab Colombian Meeting on High Energy Physics 6th ComHEP Nov 29, 2021 to Dec 03, 2021

Short-Baseline Neutrino Anomalies

- Four anomalies have been observed in neutrino experiments at short baseline in the last 20 years
- These anomalies provided hints to indicate there is a fourth and non-weakly interacting (sterile) type of neutrino

Experiment	Type	Channel	Significance
LSND anomaly	DAR accelerator	$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	3.8 σ
MiniBooNE anomaly	SBL accelerator	$v_{\mu} \rightarrow v_{e}$ $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	4.5 σ 2.8 σ
GALLEX/SAGE	Source – e	v _e disappearance	2.8 σ
Reactors anomaly	β decay	$ar{v}_{\!\scriptscriptstyle e}$ disappearance	3.0 σ

- Each possibly explained by non standard sterile neutrino states driving oscillations at $\Delta m^2_{new} \approx 1~eV^2$ and small $sin^2(2\theta_{new})$
- Is there any additional physics beyond the 3- flavor mixing neutrino oscillation?

Sterile Neutrino Physics

PRD 64 (2001) 112007

decay-at-rest pion beam (Los Alamos, 1993-1998)

| Copper beamstop | LSND |
| Baseline 30 m |
| E = [20 – 50] MeV |
| L/E ≈ 1 m/MeV |

Low energy \overline{v}_{μ} beam from a

167 tons liquid scintillator

Decay in flight neutrino source (Booster Neutrino Beam - Fermilab) L/E similar to LSND

MiniBooNE

Baseline 540 m

E=[0 - 2] GeV

L/E ≈ 1 m/MeV

800 tons mineral oil

Tension between v_e appearance and v_μ disappearance results

- Sterile neutrino scenario is far from understood:
 - No evidence in V_{μ} disappearance experiments (IceCube, NOvA, MINOS/MINOS+)
 - No precise indication from recent \bar{v} flux measurement at reactors
 - Planck data/Big Bang cosmology: at most one further flavor with m_{new}<0.24 eV

Short Baseline Program (SBN)

- Three argon Time Projection chambers (TPC) detectors at different baselines from Booster neutrino beam searching for sterile neutrino oscillations
 - Measuring both appearance and disappearance channels
- Measure neutrino cross sections on liquid argon
- Same detector technology and neutrino beamline: reducing systematic uncertainties to the % level
 - A detection technique providing an excellent neutrino identification to reduce the backgrounds

LArTPC facility on the Neutrino Beams at Fermilab

LArTPC: an ideal detector for v physics

- Tracking device: precise 3D event topology with ~mm³ resolution for ionizing particle
- Powerful particle identification by dE/dx vs range

• Remarkable e/ γ separation: calorimetric capabilities can distinguish e from γ at the

shower start

el. shower

First Low-Energy Excess Search with MicroBooNE

- Four independent analyses
 - Single-photon analysis
 - NC \triangle ->N γ hypothesis
 - Ιγ0p, ΙγΙp
 - Searches for a Ve excess
 - Quasi-elastic kinematics (lelp)
 - MiniBooNE-like final states (IeNp, Ie0p)
 - All V_e final states (IeX)

First Low-Energy Excess Search with MicroBooNE

• No evidence for an enhanced rate of single photons from NC Δ ->N γ decay above nominal MC predictions

https://arxiv.org/pdf/2110.14080.pdf, https://arxiv.org/pdf/2110.14065.pdf, https://arxiv.org/pdf/2110.13978.pdf

- \bullet Observe V_e candidate events in agreement, or below, the predicted rates
- Reject the hypothesis that v_e CC interactions are fully responsible for the MiniBooNE excess at > 97% C. L. in all analyses

https://arxiv.org/abs/2110.14054

SBND and ICARUS Detectors

- Central cathode with 2 m drift regions
- 3 readout wire planes
 (2induction+collection)
 I 1263 TPC channels read out with amplification (ASIC) and digitization (commercial AD 7274) in cold
- 120 PMTs 8" hamamatsu, 192 X-ARAPUCA channels and TPB coated reflective foils embedded in cathode

Cosmic ray tagger: scintillator strips read

- 2 TPCs per module with central cathode, 1.5 m drift, E_D =0.5 kV/cm, $\Delta t \sim 1$ ms
- 3 readout wire planes (2induction+collection) per TPC, ~54000 wires at 0, 60 degrees
- 360 PMTs 8"
- Ocsmic ray tagger: scintillator strips read out by SiPMs

Neutrino Interactions at SBN

- High statistics precision measurements of neutrino argon cross sections in the DUNE energy range
 - SBND will have the word's highest statistics cross section measurements on argon
 - ICARUS will have high statistics electron neutrino cross section measurement

ve from the NuMI off axis at ICARUS

• Rich BSM searches: Neutrino tridents, dark matter, Higgs portal, heavy neutral lepton, millicharged particles...

Sensitivity of SBN program

• Searches for both V_e disappearance and V_μ appearance

• SBN cover much of the parameters allowed by past anomalies at $>5\sigma$ significance

SBND Experiment

Status on SBND Construction

- Production of all TPC components and readout electronics is complete and components have been delivered to Fermilab
- TPC is being assembled, first TPC components installed in July 2021
 - Cathode plane assembly recently installed
 - Field cage bottom installed

TPC Assembly

• First Anode plane successfully installed in October 2021

Wire planes

HV cathode

Photon Detectors and Cosmic Ray Tagger

- All PMTs delivered to Fermilab. Stored in light protected room. Post-shipment reception tests completed
- All X-ARAPUCA modules delivered to Fermilab, clean tent ready for final assembly
- Photon detector calibration diffusers successfully installed on cathode plane
- Botton cosmic ray tagger installed in 2019

Bottom CRT

x-ARAPUCA

Electronic Installation and DAQ

- Cold electronics and readout electronics ready for installation
- Installation of electronics components for detector readout and monitoring at SBND experimental hall is well underway
 - Racks, readout electronics, power supplies, ground impedance monitors, cabling, etc
 - All detector reader racks expected completed in early 2022

Cryostat and Cryogenics

- Warm outer vessel installed in the building
- Membrane cryostat material arrived at Fermilab in April 2021
- Cryostat top cap construction and test fit completed at CERN in May 2021
- External cryogenics installation progressing well at Fermilab

dewars at FNAL

ICARUS at **FNAL**

- Several technology improvements were introduced, aiming to further improve the achieved performance ICARUS previous runs: new cold vessels, improvement of the cathode planarity, higher performance read-out electronics and upgrade of the PMT system
- ICARUS began commissioning in 2020, collecting first neutrino data in June 2021
- Stable noise levels (S/N>10), good electron lifetime

Electron Lifetime

Light Collection System Upgrade (PMT)

• ICARUS at SBN has 360 PMTs 8" (5% photocathode coverage of TPC wire area, 15

phe/MeV) that provides:

- Precisely identify the time of occurrence of any ionizing event in TPC with ns resolution

- Localize events with <50 cm spatial resolution
- Give event topology for selection purposes
 - Sensitivity to low energy events (~100 MeV)
- The system was completed in 2019
- Commissioning of the system started in 2020

TPC Readout Electronics Upgrade

Reside outside the cryostat

- New TPC readout electronics
 - A front-end based on analogue low noise/charge sensitive pre-amplifier
 - More compact layout: both analog+digital electronics in a single flange
 - Lower noise ~1200 e- equivalent (~20% S/N improvement w.r.t LNGS)
 - Shorter shaping time $\sim 1.5~\mu s$ matching e- transit time between wire planes providing a better hit position separation

TPC Noise (coherent noise removed)

New Cosmic Ray Tagging System (CRT)

- CRT surrounds the cryostat with two layers of plastic scintillators (~1100 m²)
- Provides spatial and timing coordinates of the track entry point
- Few ns time resolution allows measuring direction of incoming/ outgoing particle propagation via time of flight
- Three subsystems providing ~95% tagging efficiency:
 - Bottom, side and top CRT
- Finalizing the installation of the top CRT

Side CRT: installed

ICARUS Commissioning Status

 ICARUS started to take neutrino data from Booster (2.8x10¹⁹ POT) and NuMI **Electron Neutrino**

(5.2×10¹⁹ POT) this past June 2021

Muon Neutrino

Final stages of the trigger system are being implemented and tested this fall

- Commissioning of full cosmic ray tagger and installation of the overburden is scheduled in early 2022
- Collecting neutrino data from Booster and NuMI neutrino beams

Search for Neutrino-4 Oscillation Signal

- The Neutrino-4 collaboration claimed a reactor neutrino disappearance signal with a clear modulation with L/E \sim I-3m/MeV
- ICARUS will perform a single-detector oscillation analyses using data taken in the coming year (before SBND data is available)

NEUTRINO-4 reactor signals

- ICARUS will be able to test this oscillation hypothesis in the same L/E range in two independent channels with different beams
 - Disappearance of V_{μ} using Booster beam
 - Disappearance of V_e using NuMI beam

Summary

- The SBN detectors will perform a world-leading search for eV-scale sterile neutrino by looking at both appearance and disappearance channels
- Rich physics program of neutrino-argon scattering measurements and BSM physics
- SBND construction is well on its way, all the components ready for assembly and installation
 - SBND installation in progress, expect commissioning in 2023
- After an extensive refurbishing, ICARUS installation at FNAL in the SBN far site has been completed
- Commissioning of ICARUS at Fermilab in progress and getting ready to start the physics data taken
- The SBN oscillation program will begin when SBND will be operational
- Many opportunities to join the collaboration and participate with installation, commissioning and data analysis

