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Prelude: Stellar Frontiers for Dark Sectors

® Energy losses = significantly alter minimal cooling paradigm
® Energy transport = modifications to stellar models

e Capture of weakly interacting particles = neutrino
fluxes/heating/black hole formation

Neutron Star Constraints on Dark Matter The Stellar Frontier



Prelude: Stellar Frontiers for Heavy Dark Sectors

Prelude: Stellar Frontiers for Heavy Dark
Neutron Star Constraints on Dark Matter Sectors



Prelude: Stellar Frontiers for Heavy Dark Sectors

® If DM (x) has a non vanishing o, 1, it can be captured in celestial

Objects. Press and Spergel '85, Griest and Seckel '86, Gould '87, Goldman et.al. '89

Prelude: Stellar Frontiers for Heavy Dark
Neutron Star Constraints on Dark Matter Sectors




Prelude: Stellar Frontiers for Heavy Dark Sectors

® If DM (x) has a non vanishing o, 1, it can be captured in celestial

Objects. Press and Spergel '85, Griest and Seckel '86, Gould '87, Goldman et.al. '89

® Dynamics governed by the equation

dN,

=C—-EN, - AN2
dt

Prelude: Stellar Frontiers for Heavy Dark
Neutron Star Constraints on Dark Matter Sectors




Prelude: Stellar Frontiers for Heavy Dark Sectors

® If DM (x) has a non vanishing o, 1, it can be captured in celestial

Objects. Press and Spergel '85, Griest and Seckel '86, Gould '87, Goldman et.al. '89

® Dynamics governed by the equation

dN,

=C—-EN, - AN2
dt

Prelude: Stellar Frontiers for Heavy Dark
Neutron Star Constraints on Dark Matter Sectors




Prelude: Stellar Frontiers for Heavy Dark Sectors |l

Neutrinos Press and Spergel '85, Griest et.al. '86, Gould '87,++, RG et.al.'17
Q-0

Black Hole formation

Goldman et.al. '89, Kouvaris et.al."10 '11

| '12, McDermott et.al. '12..., RG et.al. '18

Heating cold and
old objects Kouvaris ‘07,
'10, Bertone et.al. '08,
= McCullough et.al. '10, Baryakhtar
% et.al. '17, Bell et.al. '18, RG and
Heeck '19, RG and Tinyakov '19
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Introduction: Neutron Stars
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® Much about neutron star P [-

interiors unknown

® We consider a
phenomenological NS
profile. Exotic phases
not considered.
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density functionals which
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Introduction: Neutron Stars

® Much about neutron star "wmw_"u::::::::--\\ Atmosphere
interiors unknown Coeo | nnerCrust T SITR_ . Oyger Crust
. Po mm——— S €7 NQ. Coulomb Crystal of Nuclei
® We consider a T @ ‘\:\ +elciron s
phenomenological NS P N NN
profile. Exotic phases Outer Core N \\\\
not considered. 2P P \\ 9
Brussels-Montreal energy 2 N N
density functionals which n b \\‘ ‘\‘
are fitted to APR pockiin R
et.al. '13, Goriely et.al. '13 (9-12) km (1-2) km
* M=152Mg, R=11.6km. u, =350MeV, Y, =2 x 1072,
= 65 MeV
® Consistent with observation of GW from NS-NS mergerasbor et.al. 18, Most
et.al. '18
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Introduction: Neutron Star Temperature
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Introduction: Dark Matter in Celestial Objects

e Sufficiently weak, on, R, ~ 1

® The maximal capture rate

oy [cm?] | ~ Mpax/Gyr
Sun 10-% 10711 M,
Earth 10733 10~ 19Mg
Moon 1032 107°M,,
White Dwarf | 1039 10~ 1M,
Neutron Star | 10~% 10~ 1M,
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NS Heating Constraints on Dark Matter: General Picture

Two ways to heat-up

¢ Kinetic Heating: In-falling DM heats up the neutron star. Potentially
observable by James Webb Space Telescope, the Thirty Meter
Telescope, or the European Extremely Large Telescope saryakhtar etal. '17, Raj

et.al. '17, Bell et.al. '18

c\VA4 oM 1/4
THax ~ 1700K | — = .
in 700 (C*) (0.4 GeV/cm3)

® Annihilations: If DM capture and annihilation are in equilibrium kowaris

'07, Kouvaris et.al. '10

T ~ 2480 K [ppm /(0.4 GeV /em?)]%4

ann
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Dark Matter Thermalization in NS

time of DM

Through successive collisions, DM losses
energy and accumulates in the star center.

The orbits are shrinking
and reach :

; Teore ' (1GeV\ "
r;),'s =43 m — ‘
10°K my
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Dark Matter Thermalization in NS

time of DM

Through successive collisions, DM losses
energy and accumulates in the star center.

The orbits are shrinking
and reach :

; Teore ' (1GeV\ "
r,‘},s =43 m — ‘
10°K my

® Need to ensure thermalization to test maximal heating from DM
annihiations in NS
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Thermalization: phase space [

® |nteraction rate in Fermi-degenerate medium is given by Fermi's
golden rule

d3 /
dl = 2WS(q07 q) ’
d3p d3p
S(CI07Q) _/(27r)32Ep,2Ek,/(27‘()32EP2Ek X
(@m)** (k+p—K —p) IM*F(Ep) (1-f(Ew))
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Thermalization: phase space [

® Interaction rate in Fermi-degenerate medium is given by Fermi's
golden rule

3.

d
dr = 2W5(qo, q)

d3p d3p
S(Clo7 q) - / (27T)32Ep’2Ek’ / (27‘()32EP2Ek X
(2m)*6* (k+p— K = p') IMPF(E,) (1~ f(Ey)) |

® Thermalization time is given by

Er dE;
Ttherm = _/E [dr < (E — Er)’

0
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Thermalization: response function

® For non-relativistic neutrons

M]? % g ( ~ 1(q0 — q2/2mT)2)
4 ’

q q%/2mrt

non—rel
S ( 16rm2 q

qo, q)

® For relativistic electrons inside NS

M g0

rel _

©(2u + qo — q).

RG, A. Gupta and N. Raj
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Thermalization: response function
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Example application: scalar operators
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Parameter space

for DM-neutron interactions
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Parameter space for DM-electron interactions

; (X v*x)(@e)
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Comments on the annihilation cross section

e After DM thermalizes with NS, does capture and annihilation
equilibrate? Recall: annihilation heating heats NS up to 2400 K.
* The equilibration time is given by 7eq = (Vin/C{0V)ann)*/?.

* Parameterize (0V)aun = a + bv2. For s-wave annihilation

_ Gyr\2 [ Cat\ [ GeV Tns \ /2
) 1 54 3 sa
a>75x10 Cm/S(TNs) (C)(mx TP K

and for p-wave

_ Gyr 2/¢ ¢ GeV Tns 1/2
2.9 x 107*cm? sa
b>29x 107" cm /S(TNS) ( c m. 10°K
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Conclusions and Outlook

® Neutron stars are unique laboratories to probe particle nature of dark
matter.

® Considered realistic Neutron Star profile and developed formalism for
DM scattering in Fermi-degenerate medium for arbitrary degeneracy.

® Heating of old Neutron stars can constrain several DM models.
Kinetic heating can heat old NS up to 1700 K and heating from
annihilation can lead to NS temperature of 2400 K. Decisively
testable by future infrared telescopes such as JWST.

e For signals from annihilation heating: the requirement to thermalize is
a strong criterion! DM-nucleon (electron) momentum dependent
operators DO NOT thermalize with NS efficiently = signals from
kinetic heating the only way.
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Thank You !
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