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Large Scale Structure
Cosmological motivations

The universe has structure on large scale, and to understand this structure
we must develop tools to study perturbations around the smooth

background. Scott Dodelson (2021).

Figure 1: Dodelson(2021). Figure 2: Skovbo(2011).
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Large Scale Structure
Cosmological motivations

How can we build the power spectrum at second order using a
semi-analytical tool?.

How reformulate the movement equations that describes density field
evolution using baryonic matter in Hubble expansion?.

In order to solve these questions we start with Eistein-Boltzmann equations

∇2
xΦPER(x, τ) =

3

2
H2(τ)Ωm(τ)δ(x, τ). (1)

df

dτ
=
∂f

∂τ
+

p

mR(t)
· ∇xf −mR(t)∇xΦPER · ∇pf = 0. (2)

considering contrast density term ρ(x, τ) ≡ ρ(τ)
[
1 + δ(x, τ)

]
.
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The Matter Spectrum at Second Order

Figure 3: Power Spectrum at Second Order P (k). (Fonseca & Castañeda.,2020)
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How we do it?

Using Eulerian dynamics principles we get the movement equations for a
Cold Dark Matter (CDM) fluid:

∇2
xΦPER(x, τ) =

3

2
H2(τ)Ωm(τ)δ(x, τ), (3)

∂

∂τ

[
δ(x, τ)

]
+∇x ·

[[
1 + δ(x, τ)

]
u(x, τ)

]
= 0. (4)

∂

∂τ
u(x, τ) +H(τ)u(x, τ) +

[
u(x, τ) · ∇x

]
u(x, τ)

= −∇xΦPER −
∇x · σ(x, τ)

ρ(x, τ)
, (5)
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Exploring the linear regime...

In general, we can characterize the CDM fluid throught

∇x · u(x, τ) ≡ θ(x, τ); w(x, τ) ≡ ∇x × u(x, τ), (6)

Therefore

Linear Regime

∂2

∂τ2
δ(x, τ) +H(τ)

∂

∂τ
δ(x, τ)− 3

2
H2(τ)Ωm(τ)δ(x, τ) = 0, (7)

d2

dτ2
D(τ) +H(τ)

d

dτ
D(τ)− 3

2
H2(τ)Ωm(τ)D(τ) = 0, (8)

(z + 1)P (z)
d2

dz
D(z) +Q(z)

d

dz
D(z)− 3

2
Ωm,0(z + 1)2D(z) = 0. (9)

with solution Heat y Edwars (1977)

D(+)(z) = CP 1/2(z)

∫ ∞
z

s+ 1

P 3/2(s)
ds. (10)
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Growth Factor-Redshift

Figure 4: Growth Factor-Redshift (Fonseca & Castañeda, 2020).
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Standard Perturbation Theory (Nolinear regime)

Now, we have the equations system with all terms Scoccimarro (2001)

δ(x, τ) =

∞∑
n=1

δn(x, τ); θ(x, τ) =
∞∑

n=1

θn(x, τ), (11)

and its Fourier space representation

∂

∂τ
δ̃(k, τ) + θ̃(k, τ)

= −
∫
k1

∫
k2

d3k2d
3k1δ

D(k− k1 − k2)α(k1,k2)δ̃(k1, τ)θ̃(k2, τ), (12)

with the function α(k1,k2) = 1 + (k1 · k2)/k22. And

∂

∂τ
θ̃(k, τ) +H(τ)θ̃(k, τ) +

3

2
H2(τ)Ωm(τ)δ̃(k, τ)

= −
∫
k1

∫
k2

d3k2d
3k1δ

D(k− k1 − k2)β(k1,k2)θ̃(k1, τ)θ̃(k2, τ), (13)

β(k1,k2) = |k1 + k2|2 (k1 · k2)/2k21k
2
2.
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Standard Perturbation Theory (Nolinear regime)

The solution for density field movement equations δn(k) are in n > 2 case:

δn(k) =

∫
d3q1 · · ·

∫
d3qnδ

D(k− q1 − · · · − qn)

× Fn(q1, ...,qn)δ1(q1) · · · δ1(qn), (14)

and the solution give peculiar velocities field θn(k):

θn(k) =

∫
d3q1 · · ·

∫
d3qnδ

D(k− q1 − · · · − qn)

×Gn(q1, ...,qn)δ1(q1) · · · δ1(qn). (15)

The Matter Spectrum at Second Order 9 / 18



Standard Perturbation Theory (Nolinear regime)

In agreement to Goroff (1986), Makino (1992), Scoccimarro (2001) Fn and
Gn are:

Fn(q1, ...,qn) =

n−1∑
m=1

Gm(q1, ...,qm)

(2n+ 3)(n− 1)

[
(1 + 2n)α(k1,k2)

× Fn−m(qm+1, ...,qn) + 2β(k1,k2)Gn−m(qm+1, ...,qn)

]
, (16)

Gn(q1, ...,qn) =

n−1∑
m=1

Gm(q1, ...,qm)

(2n+ 3)(n− 1)

[
3α(k1,k2)Fn−m(qm+1, ...,qn)

+ 2nβ(k1,k2)Gn−m(qm+1, ...,qn)

]
, (17)

where k1 ≡ q1+· · ·+qm, k2 ≡ qm+1+· · ·+qn, k = k1+k2, and F1 = G1 ≡ 1.
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Correlation Function and Power Spectrum

From these solutions and using correlation function:〈
δ(k1, τ)δ(k2, τ)

〉
= δD(k1 + k2)P (k2), P (k) :=

∫
d3r

(2π)3
e−ik·rξ(r), (18)

and stantard loop correction (for only one loop) Figure 5:

P (k) = R2(τ)P1,1(k) +R4(τ)

[
P2,2(k) + 2P1,3(k)

]
. (19)

Figure 5: One loop correction Scoccimarro (1996).
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One loop correction

With help developed by Makino (1992)

P2(k) = R2(τ)P1,1(k) +R4(τ)

[
2

∫
d3qP1,1(q)P1,1(|k− q|)

×
[
F

(s)
2 (q,k− q)

]2
+ 6P1,1(k)

∫
d3qP1,1(q)F

(s)
3 (q,−q,k)

]
, (20)

where P2,2(k) is:

P2,2(k) =
k3

98(2π)2

∫ ∞
0

∫ 1

−1

drdxP1,1(kr)P1,1

[
k(1 + r2 − 2rx)1/2

]
× (3r + 7x− 10rx2)2

(1 + r2 − 2rx)2
, (21)

and the contribution P1,3(k) is described by:

2P1,3(k) =
k3

252(2π)2
P1,1(k)

∫ ∞
0

drP1,1(kr)

[
12

r2
− 158 + 100r2 − 42r4

+
3

r3
(r2 − 1)3(7r2 + 2) ln

∣∣∣∣1 + r

1− r

∣∣∣∣] , (22)
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The Matter Spectrum at Second Order

Figure 6: Power Spectrum at Second Order P (k). (Fonseca & Castañeda.,2020)
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CDM and Baryonic Matter

Now we propose the solution using baryonic matter Shoji y Komatsu (2009)

∂

∂τ
[δCDM(x, τ)] +∇x ·

[
[1 + δCDM(x, τ)]uCDM(x, τ)

]
= 0, (23)

∂

∂τ
[δB(x, τ)] +∇x ·

[
[1 + δB(x, τ)]uB(x, τ)

]
= 0, (24)

∂

∂τ
uCDM(x, τ) +H(τ)uCDM(x, τ) +

[
uCDM(x, τ) · ∇x

]
uCDM(x, τ)

= −∇xΦPER, (25)

∂

∂τ
uB(x, τ) +H(τ)uB(x, τ) +

[
uB(x, τ) · ∇x

]
uB(x, τ)

= −∇xΦPER −
∇x · σ(x, τ)

ρB(x, τ)
. (26)

σij = −Pδij + η

[
∇iuj +∇jui −

2

3
δij∇ · u

]
+ ξδij∇ · u. (27)

∇2
xΦPER(x, τ) =

3

2
H2(τ)δ(x, τ) =

6

τ2
δ(x, τ), (28)
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CDM and Baryonic Matter in a Mixed Fluid

Finally,

∂

∂τ
δ̃B(k, τ) + θ̃B(k, τ)

= −
∫
k1

∫
k2

d3k2d
3k1δ

D(k− k1 − k2)α(k1,k2)δ̃B(k1, τ)θ̃B(k2, τ), (29)

∂

∂τ
θ̃B(k, τ) +H(τ)θ̃B(k, τ) +

3

2
H2(τ)Ωm(τ)δ̃B(k, τ)

= −
∫
k1

∫
k2

d3k2d
3k1δ

D(k− k1 − k2)β(k1,k2)θ̃B(k1, τ)θ̃B(k2, τ)

− C2
sk

2

[
δ̃B(k, τ)− 1

k2

∫
k1

∫
k2

d3k2d
3k1δ

D(k− k1 − k2)k2 · (k1 + k2)

δ̃B(k1, τ)δ̃B(k2, τ)
]
. (30)
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Conclusions and Outlook

1. We reconstruct all perturbation theory at firts order. We found that
growth factor is growing on independent of cosmological model, in agree-
ment with cosmological parameters reported in the literature, this factor
could be normalized to unity.

2. An important achievement for this work was to get the power spectrum
at second order using a semianalitical tools. These approximations there
are not widely developed in literature.

Outlook

Renormalized perturbation theory seems to be crucial for future work, to
the hope that it holds the key for crucial improvements using methods that
permits include baryonic matter on theoretical models, at low computational
cost.
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