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One of the main goals in cosmology is understand the distribution of dark matter in
the local Universe.

The problem: The distribution of Dark Matter (DM) is not possible to observe
directly.

A solution: Make an inference of the DM distribution using observational
measurements of galaxies distributions like SDSS or DESI (Working).

[1] Credits: V.Springel, Max-Planck Institut für Astrophysik, Garching bei München
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First Step:
Simulation
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What is the Illustris-TNG project?

“It is a great set of simulations magneto-hydro-dynamics of galaxies formation,
completed in 2019... it uses numerical algorithms and physical models. The
simulation represents a combination of high resolution and high physical fidelity"[2]..

I It includes different elements (dark matter particles, galaxies, gas cells, stars,
wind stellar particles, super massive black holes, diffuse gas), in a redshift from
z = 127 to the present z = 0.

I The simulation data includes 100 snapshots.
I Each simulation have a volume of (302,6Mpc)3.
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Classification of the Cosmic Web: T-Web

"It is to possible make a
classification of the cosmic web
as a function of the local density,

for make this classification is
used the gravitational potential"

Tαβ =
∂2φ

∂rα∂rβ
.

Depending on the value of the
eigenvalues respect to a

threshold λth, it is possible to
make a classification by

environments between peaks,
sheets, filaments and voids. This
classification is called the T-Web

[3]

[3]A dynamical classification of the cosmic web. Forero–Romero J. et al. MNRAS. 2009
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Characterization of the galaxies distribution using the β-skeleton.

The characterization is obtained
using the β-skeleton algorithm,
this algorithm allow us identify
graph.

From the graph is possible to
compute the number of
connections by galaxy (node), the
average length of connections,
the eigenvalues of the inertia
matrix, the pseudo-volume and
the pseudo-density.

Fig. 1: Graph for the galaxies distribution of
TNG for a region z < 10Mpc and β = 1.
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First Step: Reconstruction of the T-Web

Suárez-Pérez et. al [In prep.]

Fig. 2: Reconstruction of the T-Web from the β-skeleton
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¿Machine Learning?
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¿Machine Learning?

¿Why?
I It is not possible to make direct observations of the DM.
I We can to make an inference from information that can be measuring.

«Training with simulations to predict with observations».

[4]From https://www.geeksforgeeks.org/machine-learning/
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Feature Space → Galaxies.

Fig. 3: Pseudo-Volumen using the parameters
a,b y c.

I For β = 1,0

I By node is computed the number of
connections and the average lenght.

I By structure is possible define a
inertia matrix and compute its
eigenvalues.(σ1, σ2 y σ3).

Defined:
I a =

√
σ1, b =

√
σ2 y c =

√
σ3.

I The pseudo-volume V = abc and
pseudo-density as ρ = 1

abc
.
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Feature Space → Galaxies → Local Parameters.

Also was computed a set of local parameters that include the information of the first
neighbors. This information is define as ∆f = f̄ − f .

Fig. 4: Representation for the local parameters.
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Feature Space → Galaxies.
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Fig. 5: Final correlations between the features extracted from the galaxies.
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Feature Space → Density field of DM.

I The smoothing (sm) is a tuning parameter over the density field.
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Fig. 6: Density field for different smoothing sm.
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Feature Space → Deformation Tensor.

It is possible tuning a cut value λth that allow us make a classification by
environments between peaks, sheets, filaments and voids with the eigenvales

computed from the deformation tensor Tαβ .

Fig. 7: Classification by environments for different cuts in λth y sm.
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Feature Space → Galaxies.
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Fig. 8: Making cuts in the R band Luminosity.
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Classification Trees

Train: 50 % Valid: 30 %
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Random Forest

Train: 50 % Valid: 30 %
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Results
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Classification Trees

F1-score F1-score
RF CT

Peaks 0.53 ± 0.26 0.47 ± 0.25
Filaments 0.71 ± 0.05 0.65 ± 0.07

Sheets 0.58 ± 0.06 0.51 ± 0.11
Voids 0.31 ± 0.19 0.26 ± 0.17

Average including Voids 0.53 ± 0.09 0.47 ± 0.09
Average excluding Voids 0.61 ± 0.09 0.54 ± 0.09
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Evaluation in the Feature Space
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Confusion Matrix

I 63/100 peaks was correctly
predicted.

I 6/100 voids was correctly
predicted.
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Features Importance

I δ: Average Distance
I %: Pseudo-density
I ∆δ: Local average

distance
I η: Number of

connections
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Qualitative comparison
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Fig. 9: Qualitative comparison between the predicted (right) and the truth (left) environments.

From the β-skeleton to the Cosmic Web elements. 22/24



Problem Statement What is Illustris-TNG? Classification of the Cosmic Web ¿Machine Learning? Results Conclusions

Conclusions

I It is possible to make a characterization of the
T-Web through the implementation of the
β-skeleton algorithm.
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I The classification according to the confusion
matrix is efficient to predict filaments,
however, it is not good when trying to predict
voids.

I The more important features to predict the
cosmic web is the average distance δ and the
pseudo-density %.
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Thanks!

jf.suarez@uniandes.edu.co

https://jsuarez314.gitlab.io
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